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Abstract

The positive rationals can be arranged in three types of tree with
fixed matrix descent and a single root 1/1. Their descent can be taken by
bits either high to low or low to high for total six trees which have been
described separately by various authors.

Some results are obtained on turn sequences, convex hull, minimum
area rectangle, and inertia.
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Notation

The Fibonacci numbers Fn are, with usual numbering,

Fn = Fn−1 + Fn−2 starting F0 = 0, F1 = 1

= 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . A000045

The Lucas numbers Vn are

Vn = Vn−1 + Vn−2 starting V0 = 2, V1 = 1

= 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, . . . A000032

1 Tree Summary

A positive rational is represented as a pair of integers p/q

p ≥ 1, q ≥ 1 (1)

gcd(p, q) = 1

A matrix M =
(
a b
c d

)
is considered to act on such a pair by left multiplication,(

a b
c d

)(
p
q

)
=

(
p′

q′

)
(2)

There are pairs of matrices which can be applied in a binary tree to enum-
erate all and only positive rationals p/q without duplication.

Table 1 summarises the combinations.

Descent Matrices Encoding High to Low Low to High

p
p+q , p+q

q ( 1 0
1 1 ), ( 1 1

0 1 )
0000 1111

runs
Stern-Brocot,

Johnston
Calkin-Wilf

q
p+q , p+q

p ( 0 1
1 1 ), ( 1 1

1 0 )
0101 1010
phase shift

Bird Drib

p+q
q , q

p+q ( 0 1
1 1 ), ( 1 1

0 1 )
1000 1000

1-bit markers
Hanna,

Czyz-Self

Yu-Ting, Andreev,
and fractions

Kepler, Benson

Table 1: Trees of rationals using a fixed set of matrices

The matrices represent an encoding of a subtraction-only Euclidean greatest
common divisor algorithm. Or equivalently an encoding of the quotients in the
Euclidean GCD which are also the terms in the continued fraction representation
of the rational.

“High to low” or “low to high” are whether the steps or quotients are encoded
into the tree row position by taking binary bits from most to least significant
bit or least to most.

The low-to-high forms are the simplest. A given point p,q descends by mul-
tiplication of the left or right matrix. The high-to-low forms are a recursive
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definition so that the left sub-tree is a point-wise L.tree, ie. the left matrix
multiplied against each point of the tree. Similarly the right R.tree.

2 Rationals Preserving Matrices

For a matrix to be used in a tree of rationals it must “preserve” rationals in the
sense that if p,q satisfies conditions (1) then the resulting p′,q′ (2) should satisfy
them too.

Theorem 1. Conditions (3) through (7) are necessary and sufficient for a ma-
trix M =

(
a b
c d

)
to preserve p,q positive rationals without duplication.

a, b, c, d integers (3)

a, b, c, d ≥ 0 non-negative (4)

gcd(a, c) = 1 (5)

gcd(b, d) = 1 (6)

ad− bc = ±1 determinant, unimodular (7)

The GCDs are taken with gcd(n, 0) = |n| in the usual way.
The identity matrix ( 1 0

0 1 ) preserves p,q pairs without duplication and satisfies
the conditions. Likewise a swap ( 0 1

1 0 ).

Proof of Theorem 1. Take first the necessity, that when a matrix sends all pos-
itive coprime p,q to positive coprime p′,q′ and never duplicates p′,q′, then its
a,b,c,d are as described.

Consider p=1, q=1 and p=2, q=1,(
a b
c d

)(
1
1

)
=

(
a+ b
c+ d

)
=

(
p′1
q′1

)
(
a b
c d

)(
2
1

)
=

(
2a+ b
2c+ d

)
=

(
p′2
q′2

)
These are solved for a,b,c,d in terms of p′1,p′2,q′1,q′2

a = p′2 − p′1 = integer

c = q′2 − q′1 = integer

b = 2p′1 − p′2 = integer

d = 2q′1 − q′2 = integer

Since p′1,p′2,q′1,q′2 are all integers, so a,b,c,d are all integers (3).
Consider p = k, q = 1,(

a b
c d

)(
k
1

)
=

(
ka+ b
kc+ d

)
=

(
p′

q′

)
Must have a ≥ 0 otherwise big enough k gives p′ < 1. Similarly c ≥ 0 (4)

otherwise q′ < 1. If b,d have a common factor g = gcd(b, d) > 1 then k = g
gives that common factor in p′,q′, so must have gcd(b, d) = 1 (6).

Consider p = 1, q = k,
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(
a b
c d

)(
1
k

)
=

(
a+ bk
c+ dk

)
=

(
p′

q′

)
Must have b ≥ 0 otherwise big enough k gives p′ < 1. Similarly d ≥ 0 (4)

otherwise q′ < 1. If a,c have a common factor g = gcd(a, c) > 1 then k = g
gives that common factor in p′,q′, so must have gcd(a, c) = 1 (5).

If determinant ∆ = ad− bc = 0 due to ad= bc=0 then one of a,d is zero and
one of b,c is zero. If a= b= 0 then p′ = 0 always which fails p′ ≥ 1. Similarly
if d= c= 0 then q′ = 0 always. If a= c= 0 then p′,q′ does not depend on the
parent p, so p′,q′ pairs are duplicated. Similarly if b= d= 0 then p′,q′ does
not depend on the parent q, so p′,q′ pairs are duplicated. Thus cannot have
ad = bc = 0.

If determinant ∆ = ad− bc = 0 due to ad = bc 6= 0 then with gcd(a, c) = 1
and gcd(b, d) = 1 can only have d = c and b = a. In that case(

a a
c c

)(
1
1

)
=

(
2a
2c

)
If a = 0 then p′ = 0 fails p′ ≥ 1. If c = 0 then q′ = 0 fails q′ ≥ 1. Otherwise
p′,q′ have common factor 2 in p′,q′. Thus

∆ 6= 0 (8)

Since gcd(a, c) = 1 there exist integers x,y which satisfy

−xc+ ya = 1 since a,c coprime (9)

Consider p,q pair

p = xd− yb+ ∆k integer k

q = 1

Choose k big enough positive or negative to make p ≥ 1. This is possible
since ∆ 6= 0 (8). The resulting p,q gives

p′ = a(xd− yb+ ∆k) + b

= xad− yab+ a∆k + b

= xad− (1 + xc)b+ a∆k + b since ya = 1 + xc (9)

= x(ad− bc) + a∆k

= x∆ + a∆k multiple of ∆

q′ = c(xd− yb+ ∆k) + d

= xcd− ybc+ c∆k + d

= (ya− 1)d− ybc+ c∆k + d since xc = ya− 1 (9)

= y(ad− bc) + c∆k

= y∆ + c∆k multiple of ∆

∆ is a common factor in this p′,q′ so must have ∆ = ad− bc = ±1 per (7).
As a remark, this p,q pair arises from M and its adjoint (inverse times de-

terminant), in a way similar to an answer given by Thomas Jager [13] for all
integers (and on n×n matrices).
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(
a b
c d

)(
d −b
−c a

)
=

(
∆ 0
0 ∆

)
(
a b
c d

)(
d −b
−c a

)(
x
y

)
=

(
x∆
y∆

)
(
a b
c d

)((
d −b
−c a

)(
x
y

)
+

(
∆k
0

))
=

(
x∆ + a∆k
y∆ + c∆k

)
This is common factor ∆ in p′,q′ on the right, provided the vector part on

the left (
p
q

)
=

(
d −b
−c a

)(
x
y

)
+

(
∆k
0

)
is an acceptable p,q pair (1) or can be made so. One way to make it so is q=1
by x,y from gcd(a, c) = 1 per (9) and then p ≥ 1 using k. The gcd in fact gives
a whole class of solutions to q = −cx+ ay = 1

x = x0 + fa any integer f

y = y0 + fc

Taking a different f adds f(ad− bc) = f∆ to p and it could be chosen to ensure
p ≥ 1, rather than a separate k.

Turn now to the sufficiency, ie. that if the above conditions hold then
(
a b
c d

)
sends all good p,q to good p′,q′ without duplication.

p′ = ap+ bq

≥ a+ b

≥ 1 as ad− bc = ±1 (7) means not both a= 0, b= 0

q′ = cp+ dq

≥ c+ d

≥ 1 as ad− bc = ±1 (7) means not both c= 0, d= 0

For the GCD of p′,q′, since gcd(p, q) = 1 there exist integers x,y satisfying

xp+ yq = 1 since p,q coprime

and substituting into that the inverses p,q in terms of p′,q′

p = (dp′ − bq′)/∆
q = (−cp′ + aq′)/∆

gives

x(dp′ − bq′)/∆ + y(−cp′ + aq′)/∆ = 1

(xd− yc)p′ + (−xb+ ya)q′ = ±1 since ∆ = ±1 (7)

This is integer multiples of p′,q′ adding up to ±1. So gcd(p′, q′) must be a
divisor of ±1, hence gcd(p′, q′) = 1.

Finally any p′,q′ is reached from just one p,q since ∆ = ±1 means M is
invertible so p,q is uniquely determined by p′,q′.
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3 Three Possible Trees

Theorem 2. There are three possible trees of rationals descending by a fixed set
of matrices from a single root 1/1. These are the trees summarised in Table 1.

Proof. A rational preserving matrix from theorem 1 always has p′ ≥ p and
q′ ≥ q since a, b, c, d ≥ 0 (4). This means the parent of point 1,2 can only be
1,1. To send 1,1 to 1,2 (

a b
c d

)(
1
1

)
=

(
a+ b
c+ d

)
=

(
1
2

)
There are six solutions to a + b = 1 and c + d = 2 in non-negative integers

(4). Two of them satisfy the conditions of theorem 1.

a b c d

1 0 2 0 fails ad− bc = ±1 (7)
0 1 2 0 fails ad− bc = ±1 (7)

1 0 1 1 matrix A1
0 1 1 1 matrix A2

1 0 2 0 fails ad− bc = ±1 (7)
0 1 2 0 fails ad− bc = ±1 (7)

A1 =

(
1 0
1 1

)
A2 =

(
0 1
1 1

)
Similarly the parent of 2,1 can only be 1,1 and it can be reached only by B1

or B2.

B1 =

(
1 1
0 1

)
B2 =

(
1 1
1 0

)
= A1T = Fibonacci Q matrix

So to cover points 2,1 and 1,2 the tree must include one A and one B. There
are four combinations of these, and they are the trees summarised in Table 1
above.

A1 B1 Stern-Brocot / Calkin-Wilf
A1 B2 HCS / AYT
A2 B1 HCS / AYT, swap p,q
A2 B2 Bird / Drib

The combination A1,B2 is the same as A2,B1, just swapping p,q. A swap of
p,q can be performed by matrix S = ( 0 1

1 0 ) and it is seen that

S.A1.S−1 = B1

S.B2.S−1 = A2

so pair B1,A2 acting on p,q is the same as pair A1,B2 acting on swapped q,p.

B2 is the Fibonacci Q matrix (Brenner [5]) and in consequence gives Fi-
bonacci pairs on the right of the Bird and Drib trees (see section 6).

If an A,B matrix pair is swapped so that B is the left and A is the right the
result is to reverse the nodes left-to-right within a row. So B,A read left-to-right
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is the same as A,B read right-to-left. This is found in the B1,A2 of Yu-Ting
and Andreev (section 9).

4 Stern-Brocot Tree

The Stern-Brocot tree is matrices A1,B1 taken high-to-low.

tree

1/(1 + 1/tree)(
1 0
1 1

)
A1

1 + tree(
1 1
0 1

)
B1

1/1

1/2

1/3

1/4 2/5

2/3

3/5 3/4

2/1

3/2

4/3 5/3

3/1

5/2 4/1

Figure 1: Stern-Brocot tree

numerators row-wise = 1, 1, 2, 1, 2, 3, 3, 1, 2, 3, 3, 4, 5, 5, 4, . . . A007305

denominators row-wise = 1, 2, 1, 3, 3, 2, 1, 4, 5, 5, 4, 3, 3, 2, 1, . . . A047679

Johnston [15] makes the same tree arrangement as a way to enumerate the
rationals but as B1,A1 so read right to left in each row. Harrington[10] expresses
this by row replications.

The rationals in each row are in ascending order. When plotted as Cartesian
coordinates p,q this means clockwise around from the Y axis as shown in figure 2
below. The rows are symmetric in the sense that reading p/q left to right is
the same as reading q/p right to left and hence the plot is symmetric across the
leading diagonal p = q.

p

1 2 3 4 5 6 7 8 9 10 11 12 13

q

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 2:

Stern-Brocot

tree rows

The row lines do not intersect preceding rows and so give the shape of an
expanding region of p,q coverage by the tree. This coverage is the same for all
the tree forms since they are the same row points in different order.

It’s convenient to number fractions in the tree row-wise starting from n=1
for the root and in general 2d ≤ n < 2d+1 across the row at depth d down from
the root.
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In this numbering, rounding up to the next integer is given by the number
of high 1-bits of n, since each right half of the tree, which is a further high 1-bit,
is 1 + tree by the action of matrix B1.⌈

pn
qn

⌉
= CountHighOnes(n)

= number of 1s in the highest run of 1-bits

= 0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 3, . . . A090996

4.1 Row Area

Theorem 3. The area rd between tree rows d and d+1, and the total area Rd

up to row d, are

rd = 5.2d−1 − 2 area between rows d and d+1 (10)

= 1
2 , 3, 8, 18, 38, 78, 158, 318, 638, . . . d≥1 A051633

Rd =

d−1∑
i=0

ri = 5
2 (2d − 1)− 2d total area to row d (11)

= 0, 1
2 ,

7
2 ,

23
2 ,

59
2 ,

135
2 , 291

2 , 607
2 , . . . −1

2 +A097809, 1
2×A126284

Proof. The area between row 0 and row 1 is the initial triangle 1,1–1,2–2,1 of
area 1

2 which is r0 = 5.20−1 − 2 = 1
2 .

1,1

1,2

2,1

area r0 = 1
2

For a subsequent row the area between rows d and d+1 is two copies of the
preceding d−1 to d area transformed by multiplication on the left by matrices
L and R as shown in figure 3. Those matrices are shears and so don’t change
the area.

L

R

Figure 3:

Stern-Brocot

tree row

area copies

Between the copies is a gap shown by dashed lines. The gap is a diamond
shape as follows. The right edge of the L block is L.Rn. The left edge of the R
block is R.Ln.
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L.Rd

(
1
1

)
=

(
d + 1
d + 2

)
L.Rd+1

(
1
1

)
=

(
d + 2
d + 3

)

R.Ld

(
1
1

)
=

(
d + 2
d + 1

)

R.Ld+1

(
1
1

)
=

(
d + 3
d + 2

)
area=2

width = 2

height = 2

Figure 4

So the gap is area 2 and between rows is thus

rd = 2rd−1 + 2 recurrence d ≥ 1 (12)

= 5.2d−1 − 2 from start r0 = 1
2

Summing for the total area,

Rd =

d−1∑
i=0

ri = 5
2 (2d − 1)− 2d

The total area can be written as a recurrence too.

Rd = 2Rd−1 + 2d− 3
2 for d ≥ 1

This follows from the rd recurrence, or by considering how the total area is
sheared by the two matrices. Rd is 2 copies of Rd−1 plus the middle diagonal
area 2d− 3

2 .

L

R

Stern-Brocot

tree area copies

The copying means that each row comprises sheared copies of the initial
triangle of area 1

2 and the diamonds in between of area 2. This is a tiling of
the first quadrant p ≥ 1, q ≥ 1 by those triangles and diamonds, though the
repeated shears soon make them very elongated.

4.2 Area Centroid

Theorem 4. The centroid (centre of gravity) of the area between rows d and
d+1 of the Stern-Brocot tree is a point (gd, gd) which in terms of row area rd
(10) is

gd =
gtotald
rd

= 4
3 , 2, 3,

40
9 ,

125
19 ,

127
13 ,

1150
79 , 3458

159 , . . .

gtotald = 19
6 3d − d− 5

2 (13)

= 2
3 , 6, 24, 80, 250, 762, 2300, 6916, . . .
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Proof. For d = 0 the row area is three points as follows. The centroid of a
triangle is the mean of its three vertices.

(
1
1

) (
2
1

)

(
1
2

)

4/3

4/3

(
4/3
4/3

) Figure 5: between

rows d=0 and d=1

area r0 = 1/2

centroid g0 = 4/3

gtotal0 = 2/3

The centroid of a shear is the shear of the centroid. So the centroid of the
left and right sheared copies of the row area are at

(
2gd
gd

)
and

( gd
2gd

)
. Their

midpoint is at 3
2gd.

( gd
2gd

)

( gd
2gd

)

midpoint

(
3
2
gd

3
2
gd

)

The area between the two copies is the area 2 diamond centred at (d+2, d+2)
as from figure 4. So the weighted parts for gtotald+1 are

gtotald+1 = 3
2 gd .2rd + 2(d+2)

= 3gtotald + 2d+ 4

gtotald is then of the form W.3d + Xd + Y in the usual way for linear re-
currence and polynomial. The first three values starting gtotal0 = 2

3 give three
equations in three unknowns leading to (13).

The powers in rd and gtotald mean gd grows roughly as 19
15 ( 3

2 )d.

Theorem 5. The centroid (centre of gravity) of the whole Stern-Brocot tree
area to row d is a point (Gd, Gd) which in terms of the total area Rd (11) is

Gd =

{
1 for d = 0
Gtotald

Rd
for d ≥ 1

= 1, 4
3 ,

40
21 ,

8
3 ,

664
177 ,

2164
405 ,

6736
873 ,

20536
1821 ,

62032
3729 , . . .

Gtotald = 1
12

(
19.3d − 6d2 − 24d− 19

)
for d ≥ 1 (14)

= 2
3 ,

20
3 ,

92
3 ,

332
3 , 1082

3 , 3368
3 , 10268

3 , 31016
3 , 93314

3 , . . . d ≥ 1

Proof. For d=0 the tree is a single point 1,1 so centroid G0 = 1. For d=1 the
tree area is the area between d=0 and d=1 as in figure 5 so G1 = g0.

Again the centroid of a shear is the shear of the centroid. So the centroid of
the left and right sheared copies of the tree area are at

(
2Gd

Gd

)
and

(
Gd

2Gd

)
. Their

midpoint is at 3
2Gd.
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(
Gd
2Gd

)
(

Gd
2Gd

)

midpoint

(
3
2
Gd

3
2
Gd

)

The area between the two copies is a rectangle, plus initial triangle again
from figure 5.

(
1
1

) (
2
1

)
(

1
2

)

4/3

4/3

(
d+2
d+1

)
(

d+1
d+2

)

rectangle for d+1

between two sheared d

centroid 1
2

(d+3)

area 2d

So the weighted parts for Gtotald+1 are

Gtotald+1 = 3
2Gd .2Rd + 1

2 (d+3) .2d + 4
3 ·

1
2

= 3Gtotald + d2 + 3d+ 2
3

Gtotald is then of the form W.3d +Xd2 + Y d+ Z for linear recurrence and
polynomial. The first four values starting Gtotal1 = 2

3 give four equations in
four unknowns leading to (14).

The powers in Rd and Gtotald mean Gd grows roughly as 19
30 ( 3

2 )d.
The terms of Gtotal shows 12Gtotald is a multiple of 8 so Gtotald is an

integer multiple of 2
3 , starting from Gtotal1 = 2

3 .

4.3 Non-Coprime Points Between Rows

Lemma 1. A line between consecutive points in a row of the Stern-Brocot tree
does not pass through any other integer point.

Proof. At depth d=0 there is a single point and the statement is true trivially.
Suppose the statement to be true within depth d. Then the points in depth

d+1 are L and R sheared copies of row d. Those shears do not change the

number of integer points because the transformed
( p′
q′

)
= L( p

q ) =
( p
p+q

)
is

integers if and only if ( p
q ) is integers. Similarly R.

The two middle points are d,d+1 and d+1,d. They are a unit diagonal and
so do not pass through any integer point.

Theorem 6. The number of non-coprime points between row d and d+1 of the
Stern-Brocot tree is

cd = 2d − 1

Draft 7 page 11 of 41



= 0, 1, 3, 7, 15, 31, 63, 127, 255, . . . A000225

and the total non-coprime points up to row d is

Cd =

d−1∑
i=0

ci = 2d − d− 1

= 0, 0, 1, 4, 11, 26, 57, 120, 247, 502, . . . A000295

Proof. The region between row d+1 and d+2 is formed by two sheared copies
of d to d+1, similar to the row area in figure 3.

The shears preserve the coprime or non-coprime nature of the original p,q
and by lemma 1 there are no points on the lines between row points.

The diamond between the two sheared copies contains a single point d+2,
d+2 which is not coprime. So cd+1 = 2cd + 1 and starting from initial triangle
c0 = 0 gives cd = 2d − 1.

The non-coprime points between the rows are formed with the Stern-Brocot
tree structure starting from point g, g so as to make points pg, qg with common
factor g.

Second Proof of Theorem 6. Pick’s theorem[18] for a polygon on a square lattice
is

Area = InsidePoints + BoundaryPoints/2− 1

In the area between row d and d+1, the points on the boundary are the p,q
points of those two rows since by lemma 1 there are no integer points between
those.

bd = 2d + 2d+1 integer points on boundary

The inside points are the non-coprime points and hence

rd = cd + bd/2− 1 Pick’s theorem

cd = 2d − 1 with rd from (12)

Pick’s theorem can also give the total non-coprime Cd from the total area
Rd. In that case the inside points include the coprime points of preceding rows
so they must be subtracted from the count.
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4.4 Stern-Brocot Turn Sequence

Theorem 7. The turn sequence of the Stern-Brocot tree as Cartesian points
p,q is RL in row d=1 and then for each row d ≥ 2 a repeating pattern LRRL
except the first and last of each row is R.

RRRL, LRRL, LRRL, . . . , LRRL, LRRL, LRRR

Figure 6 below shows the turns for row d=4. The first turn in each row
comes from the last point of the previous row. The last turn in each row goes
towards the first point of the next row.

R

R

R

L L

R

R

L

L

R R

L

L R

R

R

Figure 6:

Stern-Brocot

row d=4

turn sequence

RRRL
LRRL
LRRL
LRRR

Proof of Theorem 7. Row d=1 and d=2 are per the following diagram. d=1 is
RL. Row d=2 is RRRR which is pattern LRRL except first and last are R.

1 2 3

1

2

3

4

R

L

R R

R

R

row d=1 RL
row d=2 RRRR

The L and R shears which copy row d to row d+1 do not change the turn
directions. So the turns in row d+1 are two copies of the turns within row d,
which means the turns except the first and last of row d. In row d+1 this is all
turns except the first, last, and two middle points.

The first turn is always right since the second point 2, 2d−1 is above and
right of the diagonal d−1, 1 to 1, d.

R

second point of row d

first point of row d

last point of row d−1

Ld−1R

(
1
1

)
=

(
2

2d− 1

)

Ld

(
1
1

)
=

(
1

d + 1

)

Rd−1

(
1
1

)
=

(
d
1

)

The last turn is always right since the second-last point 2d−1, 2 is above and
right of the diagonal d+1, 1 to 1, d+2.

Draft 7 page 13 of 41



R

second-last point of row d

Rd−1L

(
1
1

)
=

(
2d− 1

2

)
last point of row d

Rd

(
1
1

)
=

(
d + 1

1

)

first point of row d+1

Ld+1

(
1
1

)
=

(
1

d + 2

)

The middle two turns are always left since they are a diagonal d, d+1 to
d+1, d and the second from middle is above that line.

L

L

before middle

L.Rd−2.L

(
1
1

)
=

(
2d− 3
2d− 1

)

middle

L.Rd−1

(
1
1

)
=

(
d

d + 1

)

middle

R.Ld−1

(
1
1

)
=

(
d + 1
d

)

after middle

R.Ld−2.R

(
1
1

)
=

(
2d− 1
2d− 3

)

5 Calkin-Wilf Tree

The Calkin-Wilf tree [6] is matrices A1,B1 taken low-to-high.

p/q

p/(p+q)(
1 0
1 1

)
A1

(p+q)/q(
1 1
0 1

)
B1

1/1

1/2

1/3

1/4 4/3

3/2

3/5 5/2

2/1

2/3

2/5 5/3

3/1

3/4 4/1

Figure 7: Calkin-Wilf tree

numerators row-wise = 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, . . . A002487

denominators row-wise, same but 1 later

Calkin and Wilf show the numerators row-wise are the Stern diatomic se-
quence (counts of hyperbinary representations), and the denominators the same
sequence but 1 ahead. (This sequence is also “fusc” of Dijkstra [8].)

Stern established various properties of the sequence which are summarized
by Lehmer [16].

1. Sum of numerators across a row is 3d. This is the same in all the trees
starting 1/1 since rows are permutations.

2. Adjacent terms have no common factor (hence rationals in reduced terms
for the tree).

3. An adjacent pair a, b occurs only once (hence no duplication in the tree).
4. An adjacent pair a, b occurs in row one less than sum of quotients of

continued fraction of a/b.
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5. Numerators in a row read left to right are the same as read right to left,
if the 1 of the first numerator of the next row is included. Or equivalently
the same as denominators read right to left.

The tree can be iterated row-wise, and at the end of each row back to the
start of the next, by

pnext = q (15)

qnext = p+ q − 2r

where r remainder from p/q, in range 0 ≤ r < q

(15) is given by Mike Stay in OEIS A002487. It follows from a problem posed
by Knuth [17] to show that the following iteration xn enumerates all rationals.

xn =
1

1 + 2CountLowZeros(n) + xn−1
starting x0 = 0 (16)

CountLowZeros(n) = number of low 0-bits of n in binary

= 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, . . . n≥1 A007814

The answer by C. P. Rupert forms what is the Calkin-Wilf tree in these
xn = p/q and shows how CountLowZeros is the number of the trailing R, so
reversing those steps up, then going across, and then back down L steps gives
next point row-wise, including wrapping around from the end of one row to the
start of the next.

(16) uses CountLowZeros(n) of the destination n. This is low 1-bits on the
n−1 of the xn−1 since CountLowOnes(n−1) = CountLowZeros(n) (increment
turning low 1s into 0s).

A note in the answers by Moshe Newman is that the iteration can be written

pnext
qnext

=
1

1 + 2
⌊
p
q

⌋
+ p

q

(17)

This is since an L step is q/(p+q) so leaves p<q. An R is (p+q)/q so repeated
m times descends to (p+mq)/q. m is recovered by

m =
⌊p
q

⌋
= CountLowOnes(n−1) = CountLowZeros(n)

A little rearrangement using p
q =

⌊
p
q

⌋
+ r

q where r is the remainder from

division p/q turns (17) into (15).

The previous point row-wise follows in a similar way. The number of trailing
0-bits of n, which are L steps, is

m =
⌈q
p

⌉
− 1 = CountLowZeros(n) (18)

Going up by m, across, and back down, then becomes the following. Taking
remainder r negative corresponds to the ceil in (18).

pprev = q − p− 2r

where r remainder from q/p, in range −p < r ≤ 0

qprev = p

Draft 7 page 15 of 41

http://oeis.org/A002487
http://oeis.org/A007814


The various trees can be taken as matrices instead of the final p, q points.
Stange[20] for example takes the Calkin-Wilf tree this way. The iteration above
can be adapted to iterate unimodular matrices across the tree.

Theorem 8. For M =
(
a b
c d

)
in the Calkin-Wilf tree, the next matrix row-wise,

and at the end of a row back to the start of the next, is

Mnext =



(
1 0

b+1 1

)
if c = 0(

c d

(2m+1)c− a b+ d− 2r

)
if c 6= 0

(19)

where division b/d so that b = dm+ r with 0≤ r<d

Proof. The last matrix in a row is Rm = ( 1 m
0 1 ) which is c=0. Any other

matrix has an L in its product which gives c6=0. The start of the next row is
Lm+1 =

(
1 0

m+1 1

)
hence (19).

Within a row a matrix and its row-wise next have some common ancestor
T =

(
at bt
ct dt

)
. M is descent left and then some m≥0 many to the right,

M = Rm.L.

(
at bt
ct dt

)
=

(
at + (at+ct)m bt + (bt+dt)m

at+ct bt+dt

)
(20)

Division b/d recovers the number of right steps m, and leaves remainder
r= bt, provided dt≥1. All matrices in the tree start from the identity matrix
where dt≥1 and further L and R descents preserve that condition.

The step down on the other side from T to Mnext is,

Mnext = Lm.R.

(
at bt
ct dt

)
=

(
at+ct bt+dt

ct + (at+ct)m dt + (bt+dt)m

)
(21)

The top row is simply c, d from M at (20). cnext in (19) uses m to go from
an at in M to a ct in Mnext ,

cnext = (2m+1)c− a
= (2m+1)(at+ct)−

(
at + (at+ct)m

)
= ct + (at+ct)m per (21)

dnext can use the remainder r to go from a bt in M to a dt in Mnext ,

dnext = b+ d− 2r

=
(
bt + (bt+dt)m

)
+ (bt+dt)− 2bt

= dt + (bt+dt)m per (21)

Division a/c can be used too, though the remainder must be taken in the
range 1 ≤ r ≤ d. The remainder is r=at and always have at ≥ 1 (in the same
manner as dt above), so when ct=0 want to leave a non-zero r. ct=0 is when
ancestor T is all R, per the c=0 case.
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Mnext =



(
1 0

b+1 1

)
if c = 0(

c d

c+ a− 2r (2m+1)b− d

)
if c 6= 0

where division a/c so that a = cm+ r with 1≤ r≤d

The quotient m can be used for both cnext = (2m+1)c − a and dnext =
(2m+1)b− d rather than remainder r in one of them if preferred.

6 Bird Tree

The Bird tree by Hinze [11] is matrices A2,B1 taken high-to-low.

tree

1/(tree + 1)(
0 1
1 1

)
A2

1/tree + 1(
1 1
1 0

)
B2

1/1

1/2

2/3

3/5 3/4

1/3

1/4 2/5

2/1

3/1

5/2 4/1

3/2

4/3 5/3

Figure 8: Bird tree

numerators row-wise = 1, 1, 2, 2, 1, 3, 3, 3, 3, 1, 2, 5, 4, 4, 5, . . . A162909

denominators row-wise = 1, 2, 1, 3, 3, 1, 2, 5, 4, 4, 5, 2, 1, 3, 3, . . . A162910

Hinze expresses the tree by a recursive definition illustrating features of the
Haskell programming language.

left 1
bird+1 = 1

p/q+1 = q
p+q = ( 0 1

1 1 )

right 1
bird + 1 = q

p + 1 = p+q
p = ( 1 1

1 0 )

6.1 Bird Turn Sequence

Theorem 9. Let BirdTurn be the turn sequence of the Bird tree as Cartesian
points p,q in the form +1 left, −1 right, and 0 straight ahead. For n = 2d+r
with 0 ≤ r < 2d, so row d offset r,

BirdTurn(n) =

{
−1, 1, 1, 1, 1, 0, 0 if n = 2 to 8

(−1)d−max(2,CountLows(n)) if n ≥ 9
(22)

= −1, 1, 1, 1, 1, 0, 0,−1,−1,−1, −1,−1,−1, 1, ... n≥2

CountLows(n) =

{
write r in binary using d many bits,
length of lowest run of bits (0s or 1s)

= 0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 3, 4, . . . n≥1
n even A001511, n odd A091090
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L

L

L

LL

L

L

R

RL

L

L

L

L L

L

Figure 9:

Bird tree row d=4

turn sequence

LLLL
LLLR
RLLL
LLLL

Proof. Turns in rows d = 1 to 4 inclusive can be verified explicitly.
Row d+1 is two copies of row d. The first copy is the left of the tree q/(p+q)

which is a shear and transpose. The shear leaves turns unchanged and the
transpose swaps L↔R. The second copy (p+q)/p too is a shear (the other
way) and transpose.

This copy and flip applies to points which have their preceding and following
points also copied, which means all except the first, last and middle two of a
row.

For the last of row d and first of d+1, working through the matrix powers
gives the following locations. Hinze notes the first and last points are Fibonacci
pairs.

L

L

second-last of row d

Rd−1L

(
1
1

)
=

(
Vd

Vd−1

)
last of row d

Rd

(
1
1

)
=

(
Fd+2

Fd+1

)

first of row d+1

Ld+1

(
1
1

)
=

(
Fd+2

Fd+3

)
second of row d+1

LdR

(
1
1

)
=

(
Vd

Vd+1

)

A cross-product determinant shows whether a point is on the left or right
side of a preceding line,

δp1 = p2 − p1, δp2 = p3 − p2, etc

cross =

(
δp1

δq1

)
×
(
δp2

δq2

)
= δp1.δq2 − δp2.δq1

> 0 if turn left
< 0 if turn right

(23)

For the last of row d,

cross = F 2
d − (−1)d = 2, 0, 5, 8, 26, 63, 170, . . . d ≥ 1 A192883

> 0 for d ≥ 3 so left turn

The first of row d+1 has the same the cross-product so also a left turn.
The middle two points of row d are, again working through matrix products,
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R

R

before middle

L.Rd−2.L

(
1
1

)
=

(
Vd−2

Vd

)
first middle

L.Rd−1

(
1
1

)
=

(
Fd

Fd+2

)

second middle

R.Ld−1

(
1
1

)
=

(
Fd+2

Fd

)
after middle

R.Ld−2.R

(
1
1

)
=

(
Vd

Vd−2

)

At the first middle point the cross-product is cross = −Fd−1Vd−1 − 3(−1)d

which is < 0 for d ≥ 3 so a right turn. The second middle is the same, transposed
and in reverse order, so also right turn.

These middle points are L↔R flipped copies of the first and last of the
preceding row. So row copying can begin at the first row with L for first and
last, which is d=4.

rowd+1 = two copies of LRflip(rowd), d ≥ 4

except first and last points L

The first points with CountLows(n) = l are the first and last of row l. The
first point is row offset l many 0-bits 0000. When copied into the next row
it is 10000 after the middle. The last point of row l is l many 1-bits 1111.
When copied into the next row it is 01111. In both cases the copies are the
same CountLows. Further copies into subsequent rows add further high bits
and CountLows also unchanged. Each copy is a flip, so d−CountLows(n) many
flips. For l ≥ 4 the row first and last points are L, so flips starting from that

are (−1)d−CountLows(n).
For l = 2, 3, the points in row d=4 (as illustrated in figure 9) follow this

formula too. But for l=1 they do not, they come out as R instead of L. Enforcing
a minimum 2 in (22) is an extra flip when l=1, giving the desired L.

The row copying and pattern of first and last same and middle two same
means the turn sequence is left to right is the same as right to left across a row.

CountLows can also be conceived as the lowest location with different adja-
cent bits, up to maximum position d. That maximum only matters for the last
point in row d which is n = 2d+1−1 all 1s. Its low run would be d+1 many bits,
but for BirdTurn just d is wanted. Another possible conception is by length of
common prefix between n and n± 1, whichever is longer, but care is needed in
cases where ±1 goes to a different bit length.
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7 Drib Tree

The Drib tree by Hinze [12] is matrices A2,B2 taken low-to-high

p/q

q/(p+q)(
0 1
1 1

)
A2

(p+q)/p(
1 1
1 0

)
B2

1/1

1/2

2/3

3/5 5/2

3/1

1/4 4/3

2/1

1/3

3/4 4/1

3/2

2/5 5/3

Figure 10: Drib tree

numerators row-wise = 1, 1, 2, 2, 3, 1, 3, 3, 5, 1, 4, 3, 4, 2, 5, . . . A162911

denominators row-wise = 1, 2, 1, 3, 1, 3, 2, 5, 2, 4, 3, 4, 1, 5, 3, . . . A162912

8 HCS Tree

Matrices A1,B2 taken high-to-low give a tree which is an amalgam of ideas by
Hanna[9] and Czyz and Self [7]. Call it “HCS”.

tree

tree + 1(
1 1
0 1

)
B1

1/(tree + 1)(
0 1
1 1

)
A2

1/1

2/1

3/1

4/1 5/2

3/2

4/3 5/3

1/2

1/3

1/4 2/5

2/3

3/4 3/5

Figure 11: HCS tree

numerators row-wise = 1, 2, 1, 3, 3, 1, 2, 4, 5, 4, 5, 1, 2, 3, 3, . . . A229742

denominators row-wise = 1, 1, 2, 1, 2, 3, 3, 1, 2, 3, 3, 4, 5, 4, 5, . . . A071766

Hanna makes the left half of the tree, being rationals p/q > 1, by encoding
continued fraction quotients into integers using 1-bit markers. Taking p/q−1 =
(p− q)/q gives the tree starting 1/1.

n = 10 . . . 0︸ ︷︷ ︸ 10 . . . 0︸ ︷︷ ︸ . . . 10 . . . 0︸ ︷︷ ︸ binary

a1 a2 . . . an − 1

p

q
= a1 +

1

a2 +
1

· · ·+
1

an

Czyz and Self encode the quotients in the same way by counting dots between
digits. When p/q is an integer, they take the last run as an rather than an−1.
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This has the effect of making the left side 0/1, 1/1, 2/1, 3/1, etc. This form
includes 0 in the rationals, but the descent is then not by a fixed pair of matrices.

Shallit [19] makes a digit-based encoding of continued fraction terms using
binary and ternary with digits 1,2,3 (rather than the usual 0,1,2). The same
encoding can be done with radix 1 and binary, where radix 1 means an integer
a is a run 111 . . . 111 of a many 1 digits. Such a variation gives the HCS tree
with an offset −1 to the n numbering.

8.1 HCS Turn Sequence

Theorem 10. The turn sequence of the HCS tree as Cartesian points p,q is the
Thue-Morse sequence: count 1-bits mod 2 of n+ 1.

The following diagram shows an example of the turns in row d=4.

L

L

R L

R

R

L

LR

R L

R

L

LR

R n+1 1-bits turn

10001 E L
10010 E L
10011 O R
10100 E L
10101 O R
10110 O R
10111 E L
11000 E L
11001 O R
11010 O R
11011 E L
11100 O R
11101 E L
11110 E L
11111 O R

100000 O R

E=even=left, O=odd=right

HCS row at depth 4
turn sequence

16 points

A turn is left or right according to whether the next point is on the left or
right side of the preceding vector. Some turns are by a small angle. Some turns
go nearly 180◦ back around.

The starting dashed line comes from the last point of the preceding row. The
final dashed line goes towards the first of the next row. The theorem applies to
all the points in the tree, including these row wrap-arounds.

Proof. Number the tree n = 1 for the single point in row d=0, then n = 2, 3 the
two points of row d=1, and in general n = 2d to 2d−1 for row d. The claim is
that the turn at point n is

count 1-bits in n+1
left even

right odd

Row d is two copies of row d−1. The first copy is the left of the tree and
is a shear by matrix B1. The shear does not change the turn sequence within
that copy. The n point numbers in that copy have a 0-bit introduced as a new
second-highest bit. Take point n = 2d−1 + t in row d−1, where 1 ≤ t < 2d−1−1.
This t is all points except the first and last. The first copy has nL = 2d + t. The
number of 1-bits in nL + 1 is the same as in n+ 1.

The second copy is the right of the tree and is a transpose and shear by matrix
A2. The shear does not change the turn sequence. The transpose changes the
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turns by flipping L↔R. The n point numbers in the second copy have a high
1-bit introduced as a new second-highest bit. Take point n = 2d−1 + t in row
d−1. The second copy is nR = 2d +2d−1 + t. In nR +1 the new 1-bit 2d−1 is not
affected by any carry from the +1 since t < 2d−1−1. So there is one more 1-bit
in nR + 1 than in n + 1. This flips the 1-bit parity odd ↔ even, corresponding
to the turn flip L↔R.

Consider now the first, last and middle two points of each row.
The turns at the last point of row d and first point of d+1 are as follows

R

L

second-last of row d

Rd−1L

(
1
1

)
=

(
Vd−1

Vd

)
last of row d

Rd

(
1
1

)
=

(
Fd+1

Fd+2

)

first of row d+1

Ld+1

(
1
1

)
=

(
d + 2

1

) second of row d+1

LdR

(
1
1

)
=

(
2d + 1

2

)

The second-last point in each row is a pair of Lucas numbers Vd−1,Vd. The
last point in each row is a pair of Fibonacci numbers Fd+1,Fd+2. Those pairs

both fall near a line from the origin 0,0 of slope golden ratio φ =
√

5+1
2 . Calculate

a cross-product in the manner of (23) to be sure the first of row d+1 is on the
right of this line.

δp1 = p2 − p1 = Fd+1 − Vd−1 = Fd−3

δq1 = q2 − q1 = Fd+2 − Vd = Fd−2

δp2 = p3 − p2 = d+2− Fd+1

δq2 = q3 − q2 = 1− Fd+2

cross = Fd−3(1− Fd+2)− (d+2− Fd+1)Fd−2

= Fd−3 − (d+2)Fd−2 + (Fd+1Fd−2 − Fd−3Fd+2)

then with d’Ocagne’s identity

FmFn+1 − FnFm+1 = (−1)nFm−n (24)

have

cross = −
(

(d+1)Fd−2 + Fd−4 + 3(−1)d
)

< 0 so turn right

< 0 can be verified explicitly for d=1 through d=3. Then for d ≥ 4 have
(d+1)Fd−2 +Fd−4 > 3 exceeding the possibly-negative 3(−1)d. So the last turn
is always right. This is point number n = 2d−1 and n+1 = 2d has an odd
number of bits (a single bit) which corresponds to right.

For the first point of row d+1

cross = δp2.δq3 − δp3.δq2

= (d+2− Fd+1)(2− 1)− (2d+1− (d+2))(1− Fd+2)

= (d−2)Fd+2 + Fd + 3

> 0 so turn left
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For d=1 have cross = 2 > 0. For d ≥ 2 all terms are positive. This is point
number n = 2d+1. n+1 = 2d+1 + 1 has an even number of bits (two bits) which
corresponds to left.

The middle two points are as follows

L

R

pre-middle 1011110

L.Rd−2.L

(
1
1

)
=

(
Vd

Vd−1

)

first middle 1011111

L.Rd−1

(
1
1

)
=

(
Fd+2

Fd+1

)

second middle 1100000

R.Ld−1

(
1
1

)
=

(
1

d + 1

)

post-middle 100001

R.Ld−2.R

(
1
1

)
=

(
2

2d− 1

)

These points are almost a transpose of the previous diagram. The first
middle and pre-middle are Fibonacci and Lucas pairs which are transposes of
the last and second-last points of the row. The second middle and post-middle
points are almost transposes of the first and second points except for −1 and
−2 in q.

The same cross-product calculations as above can be made to see that the
middle turns are left then right. This is for d ≥ 2 since the middle points exist
only for d ≥ 2.

first middle cross = d.Fd−2 + Fd−4 + 3(−1)d > 0 turn left

= 2, 1, 7, 8, 22, 34, 70, . . . d≥2

second middle cross = −
(

(d− 3)Fd+2 + Fd + 3
)
< 0 turn right

= −1,−5,−14,−34,−74,−152, . . . d≥2 − A094584

The first middle is at n = 2d + 2d−1 − 1 and n+1 = 2d + 2d−1 has an even
number of bits (two bits) which corresponds to left.

The second middle is at n = 2d + 2d−1 and n+1 = 2d + 2d−1 + 1 has an odd
number of bits (three bits) which corresponds to right.

This turn sequence result was found by searching for the values in Sloane’s
Online Encyclopedia of Integer Sequences. In retrospect, “first copy extra 0-bit
turns unchanged” and “second copy extra 1-bit transpose” might have suggested
a Thue-Morse parity of transposes. Suitable fixed directions at the middle points
are necessary since they are copied into subsequent rows. The first and last turns
are not copied and so could have been exceptions, but they follow the parity
too.

8.2 HCS Rows Reversed

Rows of the tree can be read right to left instead. This is a form considered by
Yosu Yurramendi in OEIS A245325. The matrices are A2, B1.

reverse numerators = 1, 1, 2, 2, 1, 3, 3, 3, 3, 2, 1, 5, 4, 5, 4, . . . A245325

reverse denominators = 1, 2, 1, 3, 3, 2, 1, 5, 4, 5, 4, 3, 3, 2, 1, . . . A245326
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9 Yu-Ting, Andreev Tree

Matrices B1,A2 taken low-to-high give a tree which is the enumerations of the
rationals by Yu-Ting[21, 1980] and later independently David W. Wilson (OEIS
A020650, 1996) and Andreev[1997] [1].

Each express the enumeration in terms of a recurrence

γ2n = γn + 1 starting γ1 = 1/1

γ2n+1 = 1/(γn + 1)

Arranging γ2n and γ2n+1 as children of γn gives a tree of rationals.

p/q

(p+q)/q(
1 1
0 1

)
L = B1

q/(p+q)(
0 1
1 1

)
R = A2

1/1

2/1

3/1

4/1 1/4

1/3

4/3 3/4

1/2

3/2

5/2 2/5

2/3

5/3 3/5

Figure 12: Yu-Ting, Wilson, Andreev tree (AYT)

numerators row-wise = 1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 3, 5, 2, 5, 3, . . . A020650

denominators row-wise = 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 4, 2, 5, 3, 5, . . . A020651

The previous point row-wise in the tree is

pprev = qFm−1 + rFm

qprev = qFm + rFm+1
= Rm

(
q
r

)
where division p/q gives p = qm+ r with 0 ≤ r < q

This follows in a similar way to the Calkin-Wilf tree from section 5. Low
0-bits of n are L steps. They iterate (p+q)/q so (p+mq)/q and quotient m is
how many trailing 0-bits. Reversing them up the tree goes to ( r

q ) and stepping
across leftwards is ( q

r ), from which descend again by Rm.

Rows of the tree can be read right to left instead. This is a form considered
by Yosu Yurramendi in OEIS A245327. The matrices are A2, B1 and each pair
of children are still reciprocals, but the smaller one first.

reverse numerators = 1, 1, 2, 2, 3, 1, 3, 3, 5, 2, 5, 3, 4, 1, 4, . . . A245327

reverse denominators = 1, 2, 1, 3, 2, 3, 1, 5, 3, 5, 2, 4, 3, 4, 1, . . . A245328

10 Kepler Fractions Tree

Matrices A1,A2 taken low-to-high starting from ( 1
2 ) is the descent by Kepler

[14] and Benson [3]. Kepler extends the tree only as far as to make p+q sums
which are seven string harmonics.

This tree is fractions 0 < p/q < 1.
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p/q

p/(p+q)(
1 0
1 1

)
A1

q/(p+q)(
0 1
1 1

)
A2

1/2

1/3

1/4

1/5 4/5

3/4

3/7 4/7

2/3

2/5

2/7 5/7

3/5

3/8 5/8

Figure 13: Kepler and Benson tree of fractions

numerators row-wise = 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 4, 2, 5, 3, 5, . . . A020651

denominators row-wise = 2, 3, 3, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 8, 8, . . . A086592

This is equivalent to the AYT tree of Yu-Ting et al (section 9). If a given
node of Kepler is p/q then the same node in AYT is q/(p+ q). Express this by
a matrix C

C =

(
0 1
1 1

) (
payt
qayt

)
= C

(
pkepler
qkepler

)
(25)

Then the Kepler and AYT trees are equivalent because

C−1.A1.C = B1 left matrices (26)

C−1.A2.C = A2 right matrices

At (25), the Kepler p,q is a product of Kepler matrices onto its root ( 1
2 ).

Using (26) and cancelling adjacent C.C−1 leaves a single C−1 on that root,

C.

(
pkepler
qkepler

)
= C.(Kepler LRs)

(
1
2

)
= (AYT LRs).C−1

(
1
2

)
C commute as inverse

= (AYT LRs).

(
1
1

)
=

(
payt
qayt

)
is (25)

It happens that C = A2, but it is used here for a sum and swap.

Benson considers p+q of points in Kepler’s tree and shows that p+q at
position r across row d is equal to p+q of bitrevd(r) in that row, ie. reversing
the d many bits of r. With each xi = A1 orA2, a point is x1x2 . . . xd ( 1

2 ) and
this p+q equality is

( 1 1 ) x1x2 . . . xd ( 1
2 ) = ( 1 1 )xd . . . x2x1 ( 1

2 ) (27)

Using C to go from ( 1
1 ), rather than ( 1

2 ), this is

( 1 1 ) x1x2 . . . xd C ( 1
1 ) = ( 1 1 )xd . . . x2x1 C ( 1

1 )

For M =
(
a b
c d

)
, product ( 1 1 )M ( 1

1 ) = a+b+c+d, ie. sum of elements, so
that Benson’s result shows this sum of elements is equal on bit reversal. In fact
reversal is the matrix transpose.

Theorem 11. With C from (25) and each xi = A1 orA2,
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x1x2 . . . xd C = (xd . . . x2x1 C )T (28)

Proof. Starting with the left of (28), a transpose reverses the matrix product,

x1x2 . . . xd.C = (CT .xTd . . . x
T
2 x

T
1 )T

On the right side of this, A2T =A2 removes the transpose from those xi=A2.
C=A2 so likewise CT becomes C and it commutes to the right across any
xi =A2. At an xi = A1, have

C.A1T = A1.C

so C commuting to the right across each A1T removes those transposes, leaving
(28).

Reversal (27) gives the right half of the HCS tree in section 8, ie. the part
starting at 1/2. Bit reversal is the same set of p/q points in the row but in a
different order. Benson’s result is that p+q across the row are the same.

11 Convex Hull

A convex hull is the smallest convex polygon which can be drawn around a given
set of points.

Theorem 12. The vertices of the of the convex hull around the Stern-Brocot
tree to depth d are the set of points

HV d =



(
Fi+1

Fi+2 + (d− i)Fi+1

)
for i=1 to d inclusive

( 1
1 )(

Fi+2 + (d− i)Fi+1

Fi+1

)
for i=1 to d inclusive

For d=0 the list i = 1 to i = d is taken as empty so that HV 0 is the single
point ( 1

1 ).

p
1 6 9 11 13

q

1

6

9

11

13

(
Fd

Fd+2

) (
Fd+1
Fd+2

)

(
Fd+2
Fd+1

)

(
Fd+2
Fd

)

hull d=5

vertices
1,1

1,6 6,1
2,9 9,2
3,11 11,3
5,13 13,5
8,13 13,8

Proof of Theorem 12. At d = 0 the tree has a single point HV 0 = ( 1
1 ). At d = 1

the hull gains the point
( F1+1

F1+2+(1−1)F1+1

)
= ( 1

2 ) and its transpose ( 2
1 ).
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Proceed then by induction. Suppose HV d is the hull vertices at depth d.
The points at depth d+1 are left and right sheared copies of row d. The hull
around d+1 is the hull around the two sheared d hulls, plus point ( 1

1 ).

(
Fd

Fd+2

)
A

(
Fd+1
Fd+2

)
B

C

(
Fd+2
Fd+1

)

D

(
Fd+2
Fd

)Hd−1

LA

LB LC

LD

RB

RC

RA

RD

L

R

The left shear gives the upper side points as follows. Similarly p′ the right
shear gives the lower side points.

q′ = p+ q

= Fi+1 + Fi+2 + (d− i)Fi+1

= Fi+2 + ((d+1)− i)Fi+1 is HV d+1

These are all the points from 1,1 around to LB above and RB below. The point
LC shown is a new vertex as follows which is the i = d + 1 point in HV d+1.
Similarly RC.

L

(
Fd+2

Fd+1

)
=

(
Fd+2

Fd+2 + Fd+1

)
=

(
Fd+2

Fd+3 + ((d+1)− i)Fd+2

)
i = d+1
so (d+1)−i = 0

Corollary 1. The slopes of the boundary lines of the Stern-Brocot convex hull
are d−2, d−3, . . . , 3, 2, 1, 0.

Proof. For 2 ≤ i ≤ d the slope from point i−1 to i is

s =
qi − qi−1

pi − pi−1

=

(
Fi+2 + (d−i)Fi+1

)
−
(
Fi+1 + (d− (i−1))Fi

)
Fi+1 − Fi

=
(d−i)(Fi+1 − Fi)

Fi+1 − Fi
(29)

= d− i slopes d−2 to 0

Geometrically the segment LC to RC is new in each level and has slope
−1. The shear in each subsequent level increases that slope by 1 so becomes
successively slope 0, 1, 2, etc in each deeper row.

The maximum extent Fd+2 is shown by Lehmer [16] in the context of dyads
in the Stern diatomic sequence which is the Calkin-Wilf tree.
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Theorem 13. The number of integer points around the outside of the Stern-
Brocot tree convex hull to row d is

Fd+3 − 1 = 1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, . . . A000071

row d=5 hull
outer integer points

F5+3 − 1 = 20

Proof. The centre diagonal
( Fd+1

Fd+2

)
to
( Fd+2

Fd+1

)
has Fd+2−Fd+1 = Fd many points,

counting just one of its ends.
This centre diagonal is sheared in subsequent levels up and right to make

the pairs of sides as described above. Those shears do not change the number
of integer points on the lines. So the total integer points is

2
(
F1 + F2 + F3 + · · ·+ Fd−1

)
+ Fd + 1

= 2 (Fd+1 − 1) + Fd + 1

= Fd+3 − 1

Taking the hull all the way around a single row adds a further d−1 points
across the base (looking ahead to theorem 15 that there are no points below the
diagonal). Taking the hull all the way around the whole tree adds 2d−1 points
across the base.

{
1 if d = 0

Fd+3 + d− 2 if d ≥ 1

= 1, 2, 5, 9, 15, 24, 38, 60, 95, . . .

{
1 if d = 0

Fd+3 + 2d− 2 if d ≥ 1

= 1, 3, 7, 12, 19, 29, 44, 67, 103, . . .

11.1 Convex Hull Area

Theorem 14. The area of the convex hull around the tree points to depth d is

Hd = 1
2F2d+3 − d− 1 (30)

= 0, 1
2 ,

7
2 ,

26
2 ,

79
2 ,

221
2 , 596

2 , 1581
2 , 4163

2 , . . . 1
2 A027937

Proof. For d=0 the hull is a single point of no area 1
2F0+3 − 0− 1 = 0.

For d=1 the hull is a half unit triangle 1
2F2+3 − 1− 1 = 1

2
For d ≥ 2 figure 14 below shows the hull boundary within an Fd+2 square

and with side boundary lines extended to the p and q axes.
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p

q

Fd+2

Fd+1

5

3

3 5 Fd+1 Fd+2

Fd+2Fd+1Fd

Fd

Fd+1

· · ·

· · ·

d+1

d+1

MT

T

Figure 14:

convex hull

enclosing square

and side triangles

The top-right triangle M is area 1
2F

2
d+1.

The side lines reach the q axis at Fibonacci numbers.

qaxis(i) = qi − pi(d−i) slope d−i (29)

= Fi+2 + (d−i)Fi+1 − (d−i)Fi+1

= Fi+2 on q axis

The side triangles are sheared triangles of height Fi+2−Fi+1 = Fi and width
Fi. The first triangle is the 3 to 5 which is 2×2. The top-most triangle T is
Fd+1× Fd+1 (and which happens to be the same as M).

The hull is symmetric across the diagonal so the triangles along the p axis are
the same as along the q axis. Hence the triangles become squares F 2

3 through
F 2
d .

The net hull area for d ≥ 2 is then as follows. The terms are simplified by
usual Fibonacci identities for sum of squares and doubling.

Hd = F 2
d+2 enclosing square (31)

− 1
2F

2
d M triangle

− (F 2
3 + · · ·+ F 2

d ) side triangles

− (d+ 1− 3) 3 to d+1

− 5 0,0 to 0,3 and 3,0

= F 2
d+2 − 1

2F
2
d − FdFd+1 − d− 1

= 1
2F2d+3 − d− 1
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The term −d can be eliminated by adding point 0,0; or adding points 0,1
and 1,0; or adding all three of those points.

with 0,0

d+1

0 d+1

F2d+3 − 2

2

with 1,0 and 0,1

d+1

1

0 d+1

F2d+3 − 1

2
1
2 A027941

with 0,0, 1,0, 0,1

d+1

1

0 d+1

F2d+3

2
1
2 A001519

In each case two d×1 triangles are added on the sides, so area +d. For 0,0
these triangles are sheared down to 0,0 and nothing in between. For 1,0 and 0,1
the triangles are not sheared and in between there’s a further triangle of area
1/2. For all three points there’s a unit square in between. The latter means
+d+1 which gives total area half odd Fibonaccis F2d+3/2.

Points 0,1 and 1,0 are often included in the tree as parents of 1,1.

L−1

(
1
1

)
=

(
1
0

)
R−1

(
1
1

)
=

(
0
1

)

Theorem 15. The area of the convex hull around a single row d of the Stern-
Brocot tree is

hd =
F2d+3

2
− d2

2
− d− 1

= 0, 0, 3
2 ,

17
2 ,

63
2 ,

196
2 , 560

2 , 1532
2 , 4099

2 , . . .

h0 = 0 since row d=0 is a single point (the same as H0). h1 = 0 since row
d=1 is two points so a line segment.

p
1 6 9 11 13

q

1

6

9

11

13

Row d=5 hull

area h5 = 196
2

Proof. In row d=0 the single point 1,1 has p + q ≥ d + 2. Suppose this to be
true of all points in a row d. That row descends by the L matrix to(

p′

q′

)
= L

(
p
q

)
=

(
p+ q
q

)
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so

p′ + q′ = p+ q + q

≥ d+ 2 + q

≥ d+ 3 in row d+1

Similarly the R matrix. So all points in a row are on or above the line from
1,d+1 to d+1,1. The first point Ld( 1

1 ) =
(

1
d+1

)
and last point Rd( 1

1 ) =
(
d+1

1

)
are on that line.

So the triangle below 1, d+1 to d+1, 1 is removed from the full hull Hn,

hn = Hn − (d+1− 1)2/2

11.2 Convex Hull Centroid

Theorem 16. The centroid (centre of gravity) of the convex hull of the Stern-
Brocot tree is a point (HGd,HGd) which in terms of the hull area Hd (30) is

HGd =

{
1 for d = 0
HGtotald

Hd
for d ≥ 1

= 1, 4
3 ,

40
21 ,

109
39 ,

1004
237 ,

4372
663 ,

1557
149 ,

8818
527 ,

112152
4163 , 237598

5463 , . . .

HGtotald = 1
24

(
F3d+7 − 4d2 − 22d− 13

)
for d ≥ 1

=
2

3
,

20

3
,

109

3
,

502

3
,

2186

3
, 3114, 13227, 56076, 237598,

3019648

3
, . . . d≥1

Proof. For d ≤ 1 the hull is the same as the area so HG0=G0 and HG1=G1 as
from theorem 5.

For d ≥ 2 apply the hull parts (31) as weights positive and negative on
the centroids of each of those parts. The centroid of a triangle is the mean of
its vertices. The side triangles are in transposed pairs and the centroid of a
transposed pair is the mean of the coordinates.

HGtotald = F 2
d+2 . Fd+2/2 enclosing square

− F 2
d /2 . (Fd+1+Fd+2+Fd+2)/3 M triangle

−
d∑

i=3

F 2
i .

 0 + 0 + Fi

+Fi+1 + Fi+2

+Fi+1 + (d− i+ 1)Fi

 /6 side triangles

− (d+1−3) . (0+1+1 + 3+3+d+1)/6 3 to d+1

− 5 . 11/10 0,0 to 0,3 and 3,0

For d=2 the sum i=3 to d is taken to be empty. The cubic products give
terms in F3d etc, as does the sum of cubes for the side triangles. These simplify
to F3d+7 and the stated quadratic in d.

The numerator in HGtotald is always a multiple of 8 so HGtotald is a multiple
of 1

3 . The numerator mod 3 goes in a 24-long pattern so HGtotald is an integer
or not in a 24-long pattern.

HGd is close to the middle of the enclosing Fd+2 square (and which in
section 12 will be shown to be the minimum-area enclosing rectangle). With
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φ = (1+
√

5)/2 the golden ratio,

HGd − 1

Fd+2 − 1
→

1
24 φ

3d+7/
√

5
1
2φ

2d+3/
√

5 . φd+2/
√

5

= 1
24

(
5 + 3

√
5
)

= 0.48784183 . . .

= 1
2 −

1
42+18

√
5

= 1
2 − 0.012158169 . . .

The centroid is also close to 3
5 along the diagonal hull extent, ie. without the

top triangle M.

HGd − 1

Fd+2 − 1
2Fd − 1

→
1
24 φ

3d+7/
√

5
1
2φ

2d+3/
√

5.
(
φd+2/

√
5− 1

2φ
d/
√

5
)

= 1
12

(
5+
√

5
)

= 0.60300566 . . . A179641

= 3
5 + 1

165+75
√

5
= 3

5+0.00300566 . . .

1
1
2
− 1

42+18
√
5

1

3
5

+ 1

165+75
√
5

Hull centroid,

straight or diagonal,

as k→∞

12 Minimum Area Rectangle

Theorem 17. The minimum-area rectangle around the Stern-Brocot tree points
to depth d is a square aligned vertically and horizontally. For d≥ 2, this mini-
mum rectangle is unique. For d=1, a second rectangle has equal minimum area.
In all cases the area and boundary are

AMRd = (Fd+2 − 1)2 rectangle area

= 0, 1, 4, 16, 49, 144, 400, 1089, 2916, 7744, 20449, . . . A188516

BMRd = 4 (Fd+2 − 1) boundary length

= 0, 4, 8, 16, 28, 48, 80, 132, 216, 352, 572, . . . d≥2 A204644

1, 1

Fd+2, Fd+2

Stern-Brocot to depth d=5

minimum area rectangle

is square side Fd+2 − 1

Proof. Any minimum area rectangle shares at least one side with the convex
hull so it suffices to consider rectangles aligned to the sides of the hull from
section 11.
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For d=0, the tree is a single point enclosed by an empty square of side
F0+2 − 1 = 0.

For d=1, the tree is three points and the square is AMR1 = 1. A rectangle
on the long side of the triangle is the only other alignment and it has equal
minimum area 1 too.

d = 1

area = 1

1,1

1,2

2,1

For d≥ 3, consider a rectangle on one of the upper sloping sides as from
theorem 12. For 2≤i≤d−1, the side i−1 to i has slope s=d− i from corollary 1.
The hull is symmetric across the leading diagonal so rectangles on the lower
sloping sides are the same area as the upper.

( 1
1 )

( Fd+2

Fd

)

( Fd+1

Fd+2

)
( Fi+1

Fi+2+(d−i)Fi+1

)

w(s) width

h(s) height

rectangle

with side
slope s

The further three vertices of the hull shown are on the rectangle boundary
since the line segments before and after those vertices have slopes either above
and below s, or equal to s.

When s=1, the upper right diagonal of the convex hull is on the rectangle
boundary, so that possibility is covered too.

d ≥ 3, s = 1

rectangle for upper right
diagonal side

When d=2, the four vertex points above are a slope s=1 rectangle which is
the only other alignment for this d. Point 1,3 is i=1 in the vertex numbering.
There is no i−1 point as such but this i=1 suits the slope 1 upper right side.
So the four vertices suit d=2 as well as d ≥ 3.
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1,1

1,3 2,3

3,1

d=2, s=1

points give
rectangle on upper right
diagonal side

Projecting the four vertex X and Y extents onto the rectangle slopes is
factors 1/

√
s2 + 1 and s/

√
s2 + 1. So with i = d − s, the width and height of

the rectangle as a function of s (for given d) are

w(s) =
(
(Fd+2 − Fi+1)s + (Fi+2 + sFi+1 − Fd)

)
/
√
s2 + 1

=
(
sFd+2 − Fd + Fd−s+2

)
/
√
s2 + 1

h(s) =
(
(Fd+2 − 1)s + (Fd+1 − 1)

)
/
√
s2 + 1

=
(
sFd+2 + Fd+1 − (s+ 1)

)
/
√
s2 + 1

Let diff (s) be the area difference between the rectangle and AMRd

diff (s) = w(s).h(s)−AMRd

When s=1, the rectangle is bigger than the square since

diff (1) = (Fd+2 − Fd + Fd+1)(Fd+2 + Fd+1 − 2)/2 − (Fd+2 − 1)2

= Fd+1Fd+3 − F 2
d+2 + 2Fd − 1 2×A074331

= 2Fd − 1 + (−1)d by Cassini’s identity

> 0 when d ≥ 2

For d=2 and d=3, this diff (1) is the only s. For d≥ 4, consider the area
difference multiplied by s2 + 1,

dnum(s) = (s2 + 1) diff (s)

Calculate an increment dnum(s+1) − dnum(s). This is simplified by some
tedious cancellations and d’Ocagne’s identity (24) to

dnum(s+1)− dnum(s)

=
(
Fs − (s−1)

)
Fd−sFd+2 (32)

+ Fs−1Fd−s−1Fd+2

+ 2s(Fd+2 − 1)− 1 (33)

+ Fd + (−1)d+sFs+2 (34)

+ (s−1)Fd−s

+ Fd−s−2

> 0 for 1 ≤ s ≤ d−3 and d ≥ 4

Term (32) is ≥ 0 since Fs ≥ s−1. Term (33) is > 0 since Fd+2−1 ≥ 7. Term
(34) is > 0 since s+2 ≤ d−1 means Fd > Fs+2.

So dnum(s) is an increasing function of s. The sign of diff (s) is the same as
dnum(s) so from initial diff (1) > 0 have all diff (s) > 0. Hence all the rectangles
are bigger than the square AMRd.
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As a remark, diff (s) does not in general increase the way dnum(s) with its
factor s2+1 does, but diff does remain positive.

A question by Michael Biro on Maths Overflow[4] answered by Andrew D.
King notes that the ratio of minimum bounding rectangle area to convex polygon
area is always between 1 (for a square) and 2 (for a triangle). For the minimum
rectangle and convex hull around the Stern-Brocot tree this ratio is

AMRd/Hd = (Fd+2 − 1)2/( 1
2F2d+3 − d− 1)

→
(
φ2d+4/5

)
/
(

1
2φ

2d+3/
√

5
)

= 1+ 1√
5

= 1.44721359 . . . frac part A020762

13 Inertia

OEIS A052913 is a Lucas sequence. Yosu Yurramendi notes there that it is total
of products pq across a tree row. Similar holds for sum of squares across a tree
row.

Theorem 18. Total squares p2, or products p.q, across a tree row are respec-
tively

rppd =
∑
row d

p2 =
∑
row d

q2

= 5rppd−1 − 2rppd−2 starting 1, 5

= ( 1
2+ 5

34

√
17) ( 5

2+ 1
2

√
17)d + ( 1

2−
5
34

√
17) ( 5

2−
1
2

√
17)d (35)

= 1, 5, 23, 105, 479, 2185, 9967, 45465, . . . A107839

rpqd =
∑
row d

pq

= 5rpqd−1 − 2rpqd−2 starting 1, 4

= ( 1
2+ 3

34

√
17) ( 5

2+ 1
2

√
17)d + ( 1

2−
3
34

√
17) ( 5

2−
1
2

√
17)d (36)

= 1, 4, 18, 82, 374, 1706, 7782, 35498, . . . A052913

grpp(x) =
1

1− 5x+ 2x2
grpq(x) =

1− x
1− 5x+ 2x2

Proof. Each p/q in row d becomes p/(p+q) and reciprocal (p+q)/p in row d+1.
Both are present so total squares p2 is the same as total squares q2. The total
squares and products of the new fractions are

rppd+1 =
∑

row d

p2 + (p+ q)2 = 3rppd + 2rpqd (37)

rpqd+1 =
∑

row d

2p(p+q) = 2rppd + 2rpqd (38)

Using (37) for rpq in terms of rpp and substituting that into (38) gives the
recurrence for rpp. Converse substitution gives rpq .

These recurrences are Lucas sequences. The powers (35),(36) are the usual
way to write a linear recurrence using powers of the roots of the characteristic
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polynomial, in this case x2 − 5x+ 2.
The generating functions follow from the recurrences and initial values.

Difference (37) − (38) is rppd+1 − rpqd+1 = rppd so rpp increments by rpq ,
so cumulative

rppd =

d∑
j=0

rpqj

This is also seen in the generating functions. Factor 1−x on a generating
function is first differences, grpq(x) = (1−x) grpp(x). Or conversely factor 1

1−x
is cumulative.

rpp and rpq grow as ppow , the larger root in the powers forms (35),(36)

ppow = 5
2 + 1

2

√
17 = 4.561552 . . . A082486

psmall = 5
2 −

1
2

√
17 = 0.438447 . . .

Irowx

Irowy

Irowz

row start

row end

d=4 row points

moment of inertia,

axes through centroid

Theorem 19. Consider each point p, q in a tree row to have unit mass. With
axes through the centroid, the mass moment of inertia tensor is Irowx −Irowxy 0

−Irowxy Irowy 0

0 0 Irowz

 Ix =
∑
y2 Ixy =

∑
xy

Iy =
∑
x2 Iz =

∑
x2+y2

where

Irowx(d) = rpp(d) − ( 9
2 )d

= 0, 1
2 ,

11
4 ,

111
8 , 1103

16 , 10871
32 , . . .

Irowy(d) = Irowx(d)

Irowz(d) = Irowx(d) + Irowy(d) = 2Irowx(d)

Irowxy(d) = rpq(d) − ( 9
2 )d

= 0,− 1
2 ,−

9
4 ,−

73
8 ,−

577
16 ,−

4457
32 , . . .

Proof. The centroid of the points in a row is their mean. Per Stern (summarized
by Lehmer [16]), the p or q total is 3d for 2d points, so centroid at ( 3

2 )d, ( 3
2 )d.

The sum rpp is squared x or y, and the sum rpq is product xy coordinates,
both relative to the origin. By the parallel axis theorem, these are shifts from
the centroid to there,

Irowx(d) + 2d
(
( 3

2 )d
)

2 = rppd
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Irowxy(d) + 2d
(
( 3

2 )d
)

2 = rpqd

The first few Irowxy are negative (and then negated again to positive in
the tensor matrix). Roughly speaking, this is since more p, q points are in the
2nd and 4th quadrants relative to the centroid. But rpq has its ppow > 9

2 so
eventually Irowxy(d) > 0. This happens for d ≥ 11.

Rotated by 45◦ to principal axes, with x as an anti-diagonal −45◦ and y as
leading diagonal at +45◦, the inertia becomes

IrowPx(d) = 1
2 Irowx(d) + Irowxy(d) + 1

2 Irowy(d) (39)

= rpp(d) + rpq(d)− 2(9
2 )d

= 1
2rpq(d+1)− 2(9

2 )d

= 0, 0, 1
2 ,

19
4 ,

263
8 , 3207

16 , . . .

IrowPy(d) = 1
2 Irowy(d)− Irowxy(d) + 1

2 Irowy(d) (40)

= rpp(d)− rpq(d)

= rpp(d−1) (41)

= 0, 1, 5, 23, 105, 479, . . . d≥1 A107839

row start row end

IrowPx

IrowPy

d=4 row points

moment of inertia,

principal axes

For d=0 at (41), rpp−1 = 0 is by extending its recurrence backwards, or its
powers form at −1.

Initially Irowx(d) < Irowy(d) which is roughly speaking a distribution of
points wider than high measured by squared distance, so more inertia when
rotating about the vertical than horizontal. Difference (39) − (40) = 2Irowxy

shows Irowx bigger when Irowxy is positive which is d ≥ 11 from above.
Ratio IrowPx over IrowPy has a limit from coefficients of the power forms

of rpq and rpp

IrowPx(d)

IrowPy(d)
→ 4 +

√
17 (42)

= 8.123105 . . . A176458

The inertia of the area rd between rows d and d+1 from theorem 3 also goes
as rpp and rpq .

Starting from the triangle between d=0 and d=1, the next depth row area
from theorem 3 is the previous sheared up and across plus the square in between.
A shear does not change the area, so the mass part of sheared inertia does
not change. The coordinates do change, in the manner of (37),(38). Working
through the resulting recurrences gives inertia about the origin

IOrx = IOry = 5
3rppd + 37

12rpqd − d2 − 3d− 23
6 of row area
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= 11
12 ,

77
6 , 80, 406, 5759

3 , 8858, 121645
3 , . . .

IOrxy = 37
12rppd + 1

8rpqd − 2d− 7
3

= 7
8 ,

139
12 ,

401
6 , 977

3 , 4540
3 , 6938, 31690, . . .

The centroid is subtract rd
(
gtotald/rd

)2
, which goes as ( 9

2 )2 like the points
centroid. Turned to principal axes there the ratio Ix/Iy for row area is the same
as the points (42).
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HGtotal hull centroid sum, 31
HV hull vertices, 26
hyperbinary representations, 14
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φ golden ratio, 22
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possible trees, 6

r area between rows, 8
R whole area, 8
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Stern diatomic, 14–15
Stern-Brocot tree, 7
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A000032 Lucas numbers, 2
A000045 Fibonacci numbers, 2
A000071 Fn−1, 28
A000225 2n−1, 12
A000295 2n−n−1, 12
A001511 CountLowZeros + 1, 17
A001519 F2n−1, 30
A002487 Stern diatomic, 14, 15
A007305 Stern-Brocot numerators, 7
A007814 CountLowZeros, 15
A020650 AYT numerators, 24
A020651 Kepler numerators, AYT

denominators, 24, 25
A020762 1/

√
5, 35

A027937 F2n+3−2n−2, 28
A027941 F2n+1−1, 30
A047679 Stern-Brocot denominators, 7
A051633 5.2n−2, 8
A052913 rpq recurrence 5,−2, 35
A071766 HCS denominators, 20
A074331 Fn − (1 if n odd), 34
A082486 1

2

(
5+
√

17
)
, 36

A086592 Kepler denominators, 25
A090996 CountHighOnes, 8
A091090 CountLowZeros(n+1) +

(1 if n+1 not power of 2), 17
A094584 (n−2)Fn+3 + Fn+1 + 3, 23
A097809 5.2n−2n−4, 8
A107839 rpp recurrence 5,−2, 35, 37
A126284 5.2n−4n−5, 8
A162909 Bird numerators, 17
A162910 Bird denominators, 17
A162911 Drib numerators, 20
A162912 Drib denominators, 20
A176458 4+

√
17, 37

A179641 1
12

(
5+
√

5
)
, 32

A188516 (Fn+3−1)2, 32
A192883 Fn+3.Fn−1, 18
A204644 4(Fn+3−1), 32
A229742 HCS numerators, 20
A245325 HCS reverse numerators, 23
A245326 HCS reverse denominators, 23
A245327 AYT reverse numerators, 24
A245328 AYT reverse denominators, 24
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