
The Falcon repository builder

Version 2.0, beta 1

Dennis Kaarsemaker dennis@kaarsemaker.net

July 4 2007

Contents

1 Introduction 1

2 Setting up a repository 2
2.1 Prerequisites . 2
2.2 Creating the directory tree 3
2.3 Creating the configuration . 4
2.4 Metacomponents . 4

3 Invoking falcon 4
3.1 Updating the repository . 5
3.2 Creating .iso images . 5
3.3 Creating app-install data . 5
3.4 Creating HTML indices . 6
3.5 Synchronizing with mirrors 6

4 Importing packages 7

5 Bugs, updates and contact information 7

A Creating a GPG key 7

B Template API 8

C Plugin API 9

1 Introduction

This documents describes the usage of falcon. I wrote falcon because none
of the existing repository maintenance tools fitted my needs. Falcon is very
easy to setup, extremely easy to use and has a few features I need a lot:

mailto:dennis@kaarsemaker.net

Falcon 2.0

No hassle with incoming/ Most repository maintenance tools work with
an incoming/ system and override files, I don’t like that. I work on
my packages right inside the pool/ directory. You can however still
use an incoming/ dir and install one package at the time. It is still
flexible though and you can easily install packages from eg pbuilder’s
result dir into falcon.

Components I divide my repository into logical components (not main
and non-free, but backports, extras, drivers etc...). Falcon handles
this transparently and without override files.

HTML indices Falcon can create HTML pages for your repository, listing
all releases, components, packages and changelogs. These HTML pages
are customized per mirror listing sources.list lines to add and other
repository information.

Multi-release support Falcon supporats multiple releases just like it sup-
ports multiple components.

Mirror synchronization I maintain my repository on my adsl-line hosted
server which is not online 24/7. When it became more popular, people
offered mirroring. Falcon supports dead-easy synchronization with
mirrors via rsync or ssh, without disabling working directly in the
pool dir.

Creating .iso images Falcon can very easily create .iso images from a
directory of .deb files (Currently limited to 1 image max).

Autobuilding Falcon can soon autobuild your packages after uploading,
turning it into a full-fledged repository management system.

2 Setting up a repository

2.1 Prerequisites

The best way to install Falcon is via a .deb archive. You can also pull it
from .bzr however and not work via a .deb file. In that case you will need
to manually install the following:

• python 2.4

• dpkg-dev

• python-apt

• gzip and bzip2

• rsync

- 2 -

Falcon 2.0

• django (python-django)

• python-newt

• mkisofs (If you want the image creation function)

• ssh-agent can be very useful during syncing

For hosting the repository you need an http server such as apache 2 and/or
an ftp server such as vsftpd.

Falcon can cryptographically sign your repository. For this you need to
have gnupg installed and you need to have a signing key in your gpg keyring.
If you don’t know how to create a key, read appendix A for an example.

2.2 Creating the directory tree

You need a few directories for Falcon to function. First you need your
repositories root, in this example I’ll use /var/www/falcon.

dennis@mirage:~$ mkdir -p /var/www/falcon
dennis@mirage:~$ cd /var/www/falcon

Packages are located in a pool, which you have to create.

dennis@mirage:/var/www/falcon$ mkdir pool
dennis@mirage:/var/www/falcon$ cd pool

Packages usually are released in distribution versions. You need to name
your initial version now and create a directory for it. I started with breezy-
seveas since my first packages were aimed at Ubuntu Breezy.

dennis@mirage:/var/www/falcon/pool$ mkdir breezy-seveas

Then you need to divide your packages into components. For each of the
components you need to make a directory. breezy-seveas contains the com-
ponents extras, backports and drivers

dennis@mirage:/var/www/falcon/pool$ mkdir breezy-seveas/extras
dennis@mirage:/var/www/falcon/pool$ mkdir breezy-seveas/backports
dennis@mirage:/var/www/falcon/pool$ mkdir breezy-seveas/drivers

After that you place your .deb files in the directories of your components.
If a source or package needs to appear in multiple sections, you can use
symlinks so you don’t wast diskspace and bandwith to mirrors. Symlinks to
files outside the basedir will not work properly though.

- 3 -

Falcon 2.0

2.3 Creating the configuration

After creating the directory infrastructure, you need to configure falcon.
You do this by running falcon configure. This will launch an interactive
configuration editor.

You can specify your repository root with the -r flag, but it’s easier
to set a default repository root. You can do this by creating a symlink in
/.falcon to your repository root

dennis@mirage:~$ mkdir -p ~/.falcon
dennis@mirage:~$ ln -s /var/www/falcon ~/.falcon/rootdir

Every time you add a component or a section you should configure it
with falcon configure. . For now, you should only look at the General
Configuration and Pockets and Components sections. Configuration is very
straightforward and all options are explained.

For some items, the configuration engine will launch an external editor,
you can select which editor to use with the -e flag or the $EDITOR environ-
ment variable.

If you plan to serve your .deb files on a publicly accessible server, you
should seriously consider keeping the searchbot out of your pool/ directory
by adding the following to the robots.txt in your web root (that what corre-
sponds to http://yourdomain.com, which is not neccessarily your repository
root).

User-agent: *
Disallow: /falcon/pool/

Make sure your mirrors do the same thing. Replace /falcon/pool with
the path to your pool directory.

2.4 Metacomponents

One of the features of Falcon is the creation of metacomponents. Meta-
components contain all packages in several components and mak it easy to
add components to your repository without annoying your users by making
them change their sources.list. You can create/modify/delete metacom-
ponents with the interactive configuration editor.

3 Invoking falcon

Having configured the beast, you are now ready to actually use falcon and
turn your pile of .deb files into a proper repository.

- 4 -

Falcon 2.0

3.1 Updating the repository

After the initial hurdle of creating the directory tree and configuring Falcon,
updating your repository is surprisingly easy. After adding/moving/removing
a file you simpy run this command:

dennis@mirage:~$ falcon scan

That’s it! Falcon will re-scan your pool directory and update its internal
database. To update the Packages/Sources lists as well as the html files, run
the following command:

dennis@mirage:~$ falcon export

To scan/export only a single pocket or a single component, use the -P and
the -C flags to falcon. To avoid scanning altogether, you can install single
sources with the install command:

dennis@mirage:~$ falcon install -P feisty-seveas -C freenx freenx_0.6.0-0~seveas1.dsc

To install only packages that have been built completely, use the -c flag:

dennis@mirage:~$ falcon install -c -P feisty-seveas -C freenx freenx_0.6.0-0~seveas1.dsc

Often you will include new versions of packages in your repository. To
prevent your repository being cluttered by lots of old packages, falcon can
clean out older versions of your packages. It will prompt you if it finds older
packages and can then move them to a designated morgue directory. To
make the scanning noninteractive use the -y (force yes) or -n (force no)
flags.

3.2 Creating .iso images

If you want to create an .iso image, forget everything you just read. Creating
.iso images requires NO configuration at all. You simply need to run falcon
and give it the directory with .deb files as rootdir

dennis@mirage:~$ falcon iso -r ~/collcted_debs/

The .iso image will be created in /tmp.

3.3 Creating app-install data

To write

- 5 -

Falcon 2.0

3.4 Creating HTML indices

To set up the HTML indexing you need to set the settings for webbase and
template in the configuration editor. Templates can live in the following
locations:

• /usr/share/falcon/templates

• /.falcon/templates

• .falcon/templates in your repository root

You can easily modify or create new templates. For more information
about that, see appendix ??.

3.5 Synchronizing with mirrors

Synchronizing with mirrors takes a bit more configuration. But after that,
synchronizing with mirrors is just as easy as updating your repository.

You can manage your mirror settings with the interactive configuration
editor. It’s fairly straightforward, but beware of the rsync path:

The rsync path of a mirror can have several forms:

An rsync url like rsync://example.com/your mirror is an rsyncd mir-
ror, usually rigged to let you in based on your IP address

An ssh path like example.com:/var/www/mirror will mean upload-
ing via ssh. Using ssh-keys and ssh-agent (falcon will automatically
start ssh-agent if it finds ssh-keys) will drastically reduce the number
of times you have to enter your password.

A local path like /path/to/file A simple local file mirror, useful for mir-
rors that can only pull (ie, you can’t push to them so you’ll have to
setup an rsyncd/sshd/ftpd yourself to allow pulling)

A blank entry indicates that no syncing should take place

VERY IMPORTANT: the remote mirrors must at least have rsync ver-
sion 2.5; older versions contain a bug where sometimes rsync deletes far too
much which it subsequently uploads again.

Now that you configured it, the actual synchronizing is so simple, it’s
almost an anticlimax. All synchronization is done with the following com-
mand:

dennis@mirage:~$ falcon sync

To sync to only a specific mirror:

dennis@mirage:~$ falcon sync mirrorname

You’re now all set to create, manage and maintain a repository of soft-
ware, have fun!

- 6 -

Falcon 2.0

4 Importing packages

If you want to import source packages from another repository into your
own (eg for backports or customization), you can use the falcon-import tool.
With this tool, it takes one command to import a source package into your
repository. If, for example, you want to import zsnes from Ubuntu Dapper
multiverse, you issue this command:

dennis@mirage:~$ falcon-import -P dapper-seveas -C backports \
http://archive.ubuntu.com/ubuntu edgy multiverse zsnes

If you don’t want to import into a repository, just don’t specify a pocket
and component and it will download to the current directory.

For more information about falcon-import, see its manpage.

5 Bugs, updates and contact information

Falcon is developed and maintained by Dennis Kaarsemaker ¡dennis@kaarsemaker.net¿.
Bugs and feature requests can be filed at https://bugs.launchpad.net/falcon/+filebug

When new versions introduce backwards-incompatible changes, they will
be added to the documentation. Always read the upgrading file before
upgrading to a new release.

A Creating a GPG key

dennis@mirage:~$ gpg --gen-key
Please select what kind of key you want:

(1) DSA and Elgamal (default)
(2) DSA (sign only)
(5) RSA (sign only)

Your selection? 1
DSA keypair will have 1024 bits.
ELG-E keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 2048
Requested keysize is 2048 bits
Please specify how long the key should be valid.

0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0) 0
Key does not expire at all
Is this correct? (y/N) y

- 7 -

mailto:dennis@kaarsemaker.net
https://bugs.launchpad.net/falcon/+filebug

Falcon 2.0

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and Email Address in this form:

"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Dennis Kaarsemaker
Email address: dennis@kaarsemaker.net
Comment: Packages Key
You selected this USER-ID:

"Dennis Kaarsemaker (Packages Key) <dennis@kaarsemaker.net>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.

We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
+++ [cut some text]
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
+++ [cut some text]
key 5E1E9DA9 marked as ultimately trusted
public and secret key created and signed.

pub 1024D/5E1E9DA9 2006-01-10
Key fingerprint = FF60 6941 DAC6 AEC0 67FE D647 614F E7C0 5E1E 9DA9

uid Dennis Kaarsemaker (Packages Key) <dennis@kaarsemaker.net>
sub 2048g/9F4B4632 2006-01-10

Don’t forget to uplad your key to a keyserver:

dennis@mirage:~$ gpg --server hkp://subkeys.pgp.net --send-keys 5E1E9DA9

B Template API

The templating system uses django, for more information about django’s
template system, visit http://www.djangoproject.com/documentation/templates/.
Templates should be in their own directory, the name of this directory is
the name of the template. Three templates should be crated: base.html,
pocket.html and component.html.

- 8 -

http://www.djangoproject.com/documentation/templates/

Falcon 2.0

Each template should use the {% api %} tag so it’ll be used only with
compatible versions of falcon. The following variables are available in the
templates:

base.html gets the following variables

conf The falcon configuration

dots A number of concatenated ’../’ strings to use in relative links that
point to the rootdir

pockets The available pockets

mirrors The available mirrors

mirror The mirror for which html is currently being generated (if any)

pocket.html gets the following variables

conf The falcon configuration

dots A number of concatenated ’../’ strings to use in relative links that
point to the rootdir

p The current pocket

components The available components in this pocket

component.html gets the following variables

conf The falcon configuration

dots A number of concatenated ’../’ strings to use in relative links that
point to the rootdir

c The current component

sources The source packages in the current component

The default template is a rather simple template which is usable as learning
material if you want to crate your own template.

C Plugin API

Needs to be written

- 9 -

