
Obfuscation of steel∗: meet my Kryptonite

Axel "0vercl0k" Souchet

July 6, 2013

Abstract

For several months, I came across a lot of papers that use the LLVM framework to
develop really cool tools like:

� decompilation framework (Dagger),

� universal deobfuscation (Opticode),

� bug-�nding with static binary instrumentation (AddressSanitizer),

� fast C compiler (Clang),

� automatic test cases generator (Klee),

� etc.

In other words, LLVM is everywhere, and it's only the beginning.
In this paper, I will try in a �rst part, to give you an overview of the framework: basically
what you can do with it and what you cannot. Then, I will introduce a PoC called
Kryptonite: a small obfuscater based on LLVM. We will talk about how you can build such
tools and how they can be improved. I'm currently playing with the version 3.3 of LLVM
(the latest when I'm writing this paper), so the code may changed a bit for the upcoming
version (don't hesitate to shoot me an email if this is the case).

Keep in mind that no CPUs were harmed during this piece of research, trust me.

∗Ironic, of course

1

http://llvm.org/devmtg/2013-04/bougacha-slides.pdf
http://opticode.coseinc.com/documents/OptiCode_Technical_Details.pdf
http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/
http://klee.llvm.org/

Contents

1 LLVM's overview 4

1.1 Introduction . 4

1.2 The pipeline . 5

1.2.1 Frontend . 5

1.2.1.1 Emitting LLVM-IR via the C API 6

1.2.2 Transformation passes . 9

1.2.3 Backend . 11

1.2.4 Conclusion and going further . 13

2 Kryptonite 14

2.1 Introduction . 14

2.2 Writing an optimization pass . 14

2.3 LLVM-IR obfuscation . 15

2.3.1 Obfuscate add instructions . 15

2.3.1.1 Theory: home made 32 bits adder 16

2.3.1.2 Practice: Emit the adder with the LLVM frontend API 17

2.3.2 Mess with other instructions . 19

2.3.3 Inserting x86 assembly . 20

2.3.4 Showcase: Kryptonite crackme . 22

2

2.4 Final words . 24

3

Chapter 1

LLVM's overview

1.1 Introduction

The Low Level Virtual Machine project originally started years ago at the University of Illinois
under the supervision of Vikram Adve and Chris Lattner (the maintainer). The purpose of the
project was to build a framework to ease compiler and code generator writing. This infrastructure
is written in C++ and is open-source: see the website llvm.org. But over the years, LLVM has
really been improved by the community and Apple (mainly because they hired Chris and formed
a team to work on LLVM): a lot of frontends are now available (C, C++, Objective-C, Ada,
Haskell, etc.) and same thing for the backends (x86, x86_64, ARM, MBlaze, MIPS, PPC32,
PPC64, Sparc, etc.). LLVM is also:

� Near from 2000 �les (header and code �les) ;

� Around 2300 classes ;

� Around 770 000 lines.

Yes, it is quite a huge code base and a complex piece of software, and that is exactly the reason
I wanted to write something about it. You have to spend hours to read the source code, to read
tutorials and to debug your buggy code ; I hope to give you enough materials to play safely with
LLVM without reading tons of code :-).

As I said, the purpose of this part is to go through some fundamental concepts and tools
to understand how LLVM �nally works. I will also try to give you some codes, some examples
because that's what matters. Keep in mind I am not an LLVM expert at all, I may misuse this
wonderful tool ; if this is the case don't hesitate to shoot me an email, I will be glad to update
the paper with the good way of how things should be done!

By the way, if you don't want to compile yourself either the LLVM or the clang code, they
have kindly uploaded already-compiled binaries here: Pre-built binaries, go grab one!
I guess we are done for the introduction, make yourself comfortable, let's go!

4

http://llvm.org/
http://clang.llvm.org/
http://llvm.org/releases/download.html#3.3

1.2 The pipeline

One of the LLVM's strengths is the modularity. It is made of essentially three very important
parts: the frontend, the optimization passes, and the backend. Each of them has a very particular
role in the compilation process, I will describe their roles in the following sections.

You can see each part as a black box that takes an input and produces an output, and usually
that output is also the input of another black box: you can see that as a chain.

Figure 1.1: Compilation process

Note this design in three parts is not really new, the GNU Compiler already used this
architecture.

1.2.1 Frontend

The frontend is the part you are interested in if you want to write a compiler, or if you want to
tweak an existing compiler. This part takes in input a �le that will be parsed by your frontend
module, and your this module is responsible to generate the equivalent code using the LLVM
Intermediate representation. The LLVM-IR is a really important thing: basically it is a language
that will be used between the output of the frontend until reaching the input of the backend.
This language aims to provide several important characteristics like:

� SSA-form based,

� type safety,

� low-level operations,

� simplicity,

� the capability of representing high-level languages.

To emit this LLVM-IR, you can use a dedicated API that will allow you to create instructions:
if you want to see the type of instructions available the LLVM-IR read the LLVM Language

5

http://gcc.gnu.org/
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://en.wikipedia.org/wiki/Static_single_assignment_form
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html

Reference Manual. If you want to see a real frontend, you can check Clang's sources: this is
maybe the most famous LLVM based frontend. Its role is to rewrite the C code into the LLVM-
IR using the LLVM's dedicated API I talked you about. As far as I know the frontend API is
also available in C, in OCaml and in Python (check those slides: llvm-py, PyCon India, 2010)
via bindings.

If you never seen the classical hello-world in LLVM-IR, here it is:

@.str = private unnamed_addr constant [13 x i8] c"Hello world\0A\00", align 1

define i32 @main() {
%1 = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([13 x i8]* @.str, i32 0, i32 0))
ret i32 0

}

declare i32 @printf(i8*, ...)

You can use your preferred language to write the hello-world, and then ask your frontend to
output the LLVM-IR. To do that with clang you just have to run it like this:

$ clang -S -emit--lvm hello.c -o hello.il

Once you are able to generate this LLVM-IR you can use the rest of LLVM's pipeline without
modi�cations: building an ELF binary for SPARC is not a problem for example (because the
SPARC backend already exists).

1.2.1.1 Emitting LLVM-IR via the C API1

Before playing with the frontend API, you have to understand a bit how the API works. First,
you have to know the core of LLVM is written in C++ (you can read it in the directory in-
clude/llvm) but they made also a C API built on the top of it (in the directory include/llvm-c).

Another important detail is when you are playing with LLVM you have to manipulate several
type of containers, let me describe the main ones:

1. A module is a container of function and global variables, it is the equivalent of a .c �le
for example. This is really the top-level container used to store all the information of all
other LLVM-IR objects. If you want to look at the declaration of the llvm::Module class
see include/llvm/IR/Module.h,

2. A function is a container of basic-blocks: see the declaration of llvm::Function in include/l-
lvm/IR/Function.h,

1Of course you can do exactly the same with the C++ API, but in my opinion the C API is easier to understand
:-).

6

http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://clang.llvm.org/
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm-c/
https://llvm.org/viewvc/llvm-project/llvm/trunk/bindings/ocaml/
https://llvm.org/viewvc/llvm-project/llvm/trunk/bindings/python/
http://fr.slideshare.net/mdevan/llvmpy-w
http://clang.llvm.org/
https://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Sparc/
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm-c/
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/IR/Module.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/IR/Function.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/IR/Function.h?view=markup

3. A basic block is a container of instructions: the declaration of llvm::BasicBlock and
llvm::Instruction are there: include/llvm/IR/BasicBlock.h and include/llvm/IR/Instruc-
tion.h.

As we said previously, the top-level container is the llvm::Module class, so let's create one via
LLVMModuleCreateWithName like that (and don't forget to clean the memory with LLVMDis-
poseModule as said in the comments) :

LLVMModuleRef Module = LLVMModuleCreateWithName("module-c");
/// Do things with Module
LLVMDisposeModule(Module);

Once we have our module, we need to create a function via LLVMAddFunction ; but if you
look at its declaration you see that we need �rst to create the type of our function. The type of
a function is the number and the type of its arguments, and the type of its return value. Let's
de�ne the type of our main function with LLVMFunctionType, and add it to our module:

/// void main(void)
LLVMTypeRef MainFunctionTy = LLVMFunctionType(

LLVMVoidType(),
NULL,
0,
false

);

LLVMValueRef MainFunction = LLVMAddFunction(Module, "main", MainFunctionTy);

Before going further, we still need to impor,t somehow, the printf function:

/// extern int printf(char*, ...)
LLVMTypeRef PrintfArgsTyList[] = { LLVMPointerType(LLVMInt8Type(), 0) };
LLVMTypeRef PrintfTy = LLVMFunctionType(

LLVMInt32Type(),
PrintfArgsTyList,
0,
true

);

LLVMValueRef PrintfFunction = LLVMAddFunction(Module, "printf", PrintfTy);

Now, we can instantiate a basic block via LLVMAppendBasicBlock, and create a builder via
LLVMCreateBuilder. A builder is an object that helps you to create LLVM-IR instructions: you
specify in which basic block you want to add an instruction, and you ask the builder to create
one: convenient for us.

// An instruction builder represents a point within a basic block and is
// the exclusive means of building instructions using the C interface.

7

https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/IR/BasicBlock.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/IR/Instruction.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/IR/Instruction.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm-c/Core.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm-c/Core.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm-c/Core.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm-c/Core.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm-c/Core.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm-c/Core.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm-c/Core.h?view=markup

LLVMBuilderRef Builder = LLVMCreateBuilder();
LLVMBasicBlockRef BasicBlock = LLVMAppendBasicBlock(MainFunction, "entrypoint");
LLVMPositionBuilderAtEnd(Builder, BasicBlock);

Perfect, we are now ready to insert real instructions. For the classic hello-world we just need
to add a global variable that will hold our string, to build a call -like instruction, and a ret-like
instruction (all basic blocks must be terminated by a branch instruction). Again, the C API is
very simple to use:

LLVMValueRef Format = LLVMBuildGlobalStringPtr(
Builder,
"Hello, %s.\n",
"format"

), World = LLVMBuildGlobalStringPtr(
Builder,
"World",
"world"

);

/// printf("Hello, %s!", world);
LLVMValueRef PrintfArgs[] = { Format, World };

LLVMBuildCall(
Builder,
PrintfFunction,
PrintfArgs,
2,
"printf"

);

/// return;
LLVMBuildRetVoid(Builder);

Now, we need to compile our hello-world frontend with clang++ like this:

$ clang++ -x c llvm-c-frontend-hello.c ‘llvm-config --cxxflags --ldflags --libs‘ -o ./llvm-c-hello
$./llvm-c-hello
; ModuleID = ’module-c’

@format = private unnamed_addr constant [12 x i8] c"Hello, %s.\0A\00"
@world = private unnamed_addr constant [6 x i8] c"World\00"

declare i32 @printf(...)

define void @main() {
entrypoint:

%printf = call i32 (...)* @printf(
i8* getelementptr inbounds ([12 x i8]* @format, i32 0, i32 0),
i8* getelementptr inbounds ([6 x i8]* @world, i32 0, i32 0)

)
ret void

}

8

http://clang.llvm.org/

You can even use the tool lli (we will talk more about this tool in the backend part) to really
execute the LLVM-IR code we just emitted:

$./llvm-c-hello 2>&1 | lli
Hello, World.

OK so now you know a bit more about how a LLVM frontend looks like. If you want another
example, I have made the strlen function to see how to build if/else branches: llvm-c-frontend-
playing-with-ir.c. Also writing a frontend for a toy language like those ones is a cool exercise:
whitespace, piet, shakespear, etc.

1.2.2 Transformation passes

Basically, transformation passes can be of two types: either it really transforms the program
(a transform pass), or either it's only reading and collecting information about your code (an
analysis pass). For example, it exists a pass called "dot-cfg-only" that generates the CFG of
each function you have in your LLVM-IR �le ; this is an analysis pass:

Figure 1.2: CFG-only of main

But at the opposite, you can also have passes that will do real optimization or transformation
of your code: for example the "Dead Code Elimination" pass. It will go through your LLVM-IR

9

https://github.com/0vercl0k/stuffz/blob/master/llvm-funz/llvm-c-frontend-playing-with-ir.c
https://github.com/0vercl0k/stuffz/blob/master/llvm-funz/llvm-c-frontend-playing-with-ir.c
http://en.wikipedia.org/wiki/Whitespace_(programming_language)
http://en.wikipedia.org/wiki/Esoteric_programming_language#Piet
http://en.wikipedia.org/wiki/Shakespeare_(programming_language)
https://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/CFGPrinter.cpp?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/DCE.cpp?view=markup

code to �nd unreachable piece of code to remove them in order to simplify the program. If you
want to look at the source code of the di�erent passes, you can check the lib/Analysis directory
for analysis passes, and the lib/Transforms for the transform passes.

When you are playing with this part of the pipeline, the important tool to know is opt:
the LLVM optimizer. It is the tool that will apply the di�erent passes you want, and will give
you the optimized LLVM-IR code. Of course, it is also possible to extend its functionalities
by writing new passes ; the tool is able to load dynamically your pass and to execute it to
apply some analysis or transformation operations. You can enumerate all the available passes
by calling this command:

$ opt --help
OVERVIEW: llvm .bc -> .bc modular optimizer and analysis printer
[...]

Optimizations available:
-aa-eval - Exhaustive Alias Analysis Precision Evaluator
-adce - Aggressive Dead Code Elimination
-alloca-hoisting - Hoisting alloca instructions in non-entry blocks to the entry block

[...]

On my machine I can count exactly 157 di�erent passes. As an example, we can try to optimize
the generated LLVM-IR code for the strlen function I gave you in the previous part (llvm-c-
frontend-playing-with-ir.c). Here is the code generated by our frontend:

$ cat strlen.ll
define i32 @strlen(i8* %s) {
init:

%i = alloca i32
store i32 0, i32* %i
br label %check

check: ; preds = %body, %init
%0 = load i32* %i
%1 = getelementptr i8* %s, i32 %0
%2 = load i8* %1
%3 = icmp ne i8 0, %2
br i1 %3, label %body, label %end

body: ; preds = %check
%4 = load i32* %i
%5 = add i32 %4, 1
store i32 %5, i32* %i
br label %check

end: ; preds = %check
%6 = load i32* %i
ret i32 %6

}

The function is really simple: it loops until it �nds a null byte and meanwhile it increments
a counter to have the len of the string. Now let's launch opt to optimize the previous code:

10

https://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/
https://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/
http://llvm.org/docs/CommandGuide/opt.html
https://github.com/0vercl0k/stuffz/blob/master/llvm-funz/llvm-c-frontend-playing-with-ir.c
https://github.com/0vercl0k/stuffz/blob/master/llvm-funz/llvm-c-frontend-playing-with-ir.c
http://llvm.org/docs/CommandGuide/opt.html

$ opt -S -p -O3 strlen.ll
; ModuleID = ’strlen.ll’

; Function Attrs: nounwind readonly
define i32 @strlen(i8* nocapture %s) {
init:

br label %check

check: ; preds = %check, %init
%storemerge = phi i32 [0, %init], [%3, %check]
%0 = getelementptr i8* %s, i32 %storemerge
%1 = load i8* %0
%2 = icmp eq i8 %1, 0
%3 = add i32 %storemerge, 1
br i1 %2, label %end, label %check

end: ; preds = %check
ret i32 %storemerge

}

We can clearly see the code has been quite optimized by the utility using the "Phi nodes".
In this speci�c case you can understand the instruction as "if the execution �ow comes from the
basic block init, the value zero is moved in the variable %storemerge ; if it comes from the basic
block %check, the variable %3 is moved in %storemerge.

In the second part of the paper, we will talk more in details about how you can write your
own pass.

1.2.3 Backend

The last part of the pipeline is the backend: it is basically the software component that will
traduce the LLVM-IR into the machine code for a speci�c CPU. We can have a list of the stable
and already existing backend available in LLVM by using the tool llc (the LLVM compiler):

$ llc --version
LLVM (http://llvm.org/):

LLVM version 3.3
Optimized build.
Default target: i386-pc-linux-gnu
Host CPU: corei7

Registered Targets:
aarch64 - AArch64
arm - ARM
cpp - C++ backend
hexagon - Hexagon
mblaze - MBlaze
mips - Mips
mips64 - Mips64 [experimental]
mips64el - Mips64el [experimental]
mipsel - Mipsel
msp430 - MSP430 [experimental]

11

http://llvm.org/docs/LangRef.html#i-phi
http://llvm.org/docs/CommandGuide/llc.html

nvptx - NVIDIA PTX 32-bit
nvptx64 - NVIDIA PTX 64-bit
ppc32 - PowerPC 32
ppc64 - PowerPC 64
sparc - Sparc
sparcv9 - Sparc V9
systemz - SystemZ
thumb - Thumb
x86 - 32-bit X86: Pentium-Pro and above
x86-64 - 64-bit X86: EM64T and AMD64
xcore - XCore

This tool is very handy: you give it an LLVM-IR module for example and it is capable of
generating the assembly according to the target you have chosen. As an example, we can try to
compile our hello-world LLVM-IR program into x86 and MIPS:

$ llc hello.ll -march=mips -o hello.mips.s
$ llc hello.ll -march=x86 -o hello.x86.s
$ cat hello.x86.s
[...]
main: # @main

.cfi_startproc
BB#0: # %entrypoint

subl $12, %esp
.Ltmp1:

.cfi_def_cfa_offset 16
movl $.Lworld, 4(%esp)
movl $.Lformat, (%esp)
calll printf
addl $12, %esp
ret

[...]
$ cat hello.mips.s
main:
[...]
BB#0: # %entrypoint

lui $2, %hi(_gp_disp)
addiu $2, $2, %lo(_gp_disp)
addiu $sp, $sp, -24

$tmp2:
.cfi_def_cfa_offset 24
sw $ra, 20($sp) # 4-byte Folded Spill

$tmp3:
.cfi_offset 31, -4
addu $gp, $2, $25
lw $1, %got($format)($gp)
addiu $4, $1, %lo($format)
lw $1, %got($world)($gp)
lw $25, %call16(printf)($gp)
jalr $25
addiu $5, $1, %lo($world)
lw $ra, 20($sp) # 4-byte Folded Reload
jr $ra
addiu $sp, $sp, 24

[...]

12

http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/MIPS_architecture

Of course, once you got those assembly �les you can just use whatever compiler you like to
generate an executable binary. Here is an example with clang:

$ clang hello.x86.s -o hello
$ file hello
hello: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses shared libs),
for GNU/Linux 2.6.26, not stripped
$./hello
Hello, World.

If you have to create your own CPU target, this is surely the hardest part: it exists some really
good tutorials but creating its own backend (even for a toy-cpu) is clearly tough.

Another other interesting part, is the JIT compiler engine that you can use directly via the
lli tool. This tool allows you to take an LLVM-IR �le, to JIT compile the code and to directly
execute it. Basically, if you are on an x86 host computer, the lli program will JIT compile the
code using the x86 backend and will run it. We can try to execute our hello-world program:

$ lli hello.ll
Hello, World.

1.2.4 Conclusion and going further

As you can see previously, LLVM is a really cool set of libraries to implement compiler or JIT
compiler. What's really nice is to be able to only implement only the part you need and once
it is done you can use what already exists: frontends, optimization passes or backends. Though
some parts may be a bit obscure and not really trivial to play with, that's why I did a little
list of interesting links you should read if you de�nitely want to go further (yeah, it was only a
small introduction):

� Kaleidoscope: Implementing a Language with LLVM: if you want to write a frontend, read
this, it's perfect

� Writing an LLVM Pass: it gives you the basics to write your own analysis/transform pass

� Creating an LLVM Backend for the Cpu0 Architecture: this one focus the backend part ;
it's very tough but it is a really good tutorial

13

http://clang.llvm.org/
http://llvm.org/docs/CommandGuide/lli.html
http://llvm.org/docs/CommandGuide/lli.html
http://llvm.org/docs/tutorial/LangImpl1.html
http://llvm.org/docs/WritingAnLLVMPass.html
http://jonathan2251.github.io/lbd/

Chapter 2

Kryptonite

2.1 Introduction

The �rst time I saw the LLVM's pipeline picture, I was really interested in the LLVM-IR and
by the passes parts. It is clearly here you want to play if you are interested in obfuscation,
because you deal with the LLVM-IR and not the target CPU assembly. Basically it means your
obfuscation can be reused by all the backends supported by LLVM. You can simply write your
code in C, then you ask clang to generate the LLVM-IR code and from there you can really
transform the LLVM-IR the way it pleases you. Once you are done: you just have to compile it
for the CPU you target. Usually, when we see obfuscaters either the authors are modifying the
source (and it is usable only for one language), or either it does the obfuscation at the assembly
level: in this case it is CPU speci�c (you have also lot of problems with the instruction side-
e�ects). In our case, you can use the language you want, among the available LLVM frontends
of course, and your obfuscation ideas can be reused for others targets. You will see in that part
we will not need to hack clang's sources, or to mess with the code's AST to generate heavy
obfuscated binaries.

The purpose of this part is just to show you the small PoC I have written for the fun. You
will, of course, �nd the sources of the project on my github account. By the way, I have prepared
a little crackme that has been obfuscated with my tool Kryptonite to illustrate what type of
binaries it can produce.

2.2 Writing an optimization pass

Before talking about the obfuscation part, we need to know how you are supposed to build an
optimization pass. In a nutshell, it is a simple shared dynamic libraries that will be loaded
by opt, the LLVM optimizer. If you read carefully, the Writing an LLVM Pass tutorial on the
LLVM's wiki, you see that a pass can be involved at several levels. By levels, I mean that you can
create a pass to optimize basic blocks, to transform functions, or to optimize a whole module. To
do so, you have to subclass the according LLVM class and to implement some speci�c routines:

14

https://github.com/0vercl0k/stuffz/tree/master/llvm-funz/kryptonite
http://llvm.org/docs/CommandGuide/opt.html
http://llvm.org/docs/WritingAnLLVMPass.html

llvm::FunctionPass for example. Note that you are not supposed to mess too much with the
original code: for example if you choose to do a llvm::BasicBlockPass, modifying the CFG is
not authorized. So check really the documentation to be sure you don't try to do something you
mustn't.

Let's try to make a hello-world pass that will display the name of each function. As
I said, earlier we need to subclass llvm::FunctionPass and to implement the pure virtual
llvm::FunctionPass::runOnFunction method.

struct Hello : public llvm::FunctionPass
{

static char ID;
Hello()
: FunctionPass(ID)
{}

bool runOnFunction(llvm::Function &F)
{

printf("Function being handled: %s\n", F.getName().data());
return false;

}
};

char Hello::ID = 0;
static llvm::RegisterPass<Hello> X("hello", "hello pass!", false, false);

Then you can compile it, and run it through the LLVM optimizer via those commands:

$ clang++ hello.cpp ‘llvm-config --cxxflags --ldflags --libs core‘ -shared -o hello.so
$ opt -load ./hello.so -help | grep hello

-hello - hello pass!

OK, now you know how to build a really basic pass. The other part is to play with the
di�erent containers I presented a bit earlier: you add instructions, you split basic blocks, you
remove instructions, you insert new basic blocks ; it's simple, you just have to �nd the right
API. Don't hesitate to check my sources, I have examples of how you can change the CFG of a
function, how to insert/split basic blocks etc.

2.3 LLVM-IR obfuscation

The purpose of this section is to focus on the obfuscation, to discuss what I have implemented,
and to see how we could improve the PoC.

2.3.1 Obfuscate add instructions

My idea was quite simple, I wanted to recode the equivalent of an add instruction but without
addition. The add instruction is really important because it is used in most of all programs, and

15

https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Pass.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Pass.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Pass.h?view=markup
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Pass.h?view=markup

if you think about it you can even transform some instructions to use add instructions instead
; we will see those cases a bit later.

2.3.1.1 Theory: home made 32 bits adder

I am pretty sure, almost all of you have already studied this younger: how to make a full 32 bits
adder with only logic operators. But to do that, we have �rst to implement a full 1 bit adder.
As you can see in the picture 2.1, a 1 bit adder system has 3 inputs:

� A: the �rst bit you want to add

� B: the second bit you want to add

� Cin: the input carry (useful when chaining several 1 bit adders)

Figure 2.1: Full 1 bit adder (source: wikipedia.org)

And it has 2 outputs:

� S: the solution of the addition (A+B + Cin)

� Cout: the output carry (this one will be introduced in the input carry of another adder)

Writing the truth table of this system gives the following:

A B Cin S Cout

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

16

Now if you extract both the equations of S and Cout, you get those ones:

� S = ABCin ∨ABCin ∨ABCin ∨ABCin

� Cout = ABCin ∨ABCin ∨ABCin ∨ABCin

The watchful readers will see that the second equation is not simpli�ed, and you can ask yourself
why ? That's simple, we want to produce the most awful code possible, so we really don't want
to simplify it. Now we have those equations, we are able easily to write a system capable of
adding two bits, that's cool.

The plan now is to make a chain of 1 bit adder in order to have a real 32 bits adder like in
the picture 2.2 (but with 32 blocks instead of 4).

Figure 2.2: Full 4 bits adder (source: wikipedia.org)

So this was the theory part, because we have to implement the 32 bits adder using the
frontend API of LLVM to emit it in LLVM-IR as we did for the hello-world example in the �rst
part.

2.3.1.2 Practice: Emit the adder with the LLVM frontend API

Let's describe how to write a 1 bit adder in LLVM-IR. We need the two outputs described
earlier, but we will focus on the S one (Cout is pretty much the same). Don't forget a little
thing though: you have to extract the bit you want in the original two operands of the add

instructions. So if you have i32 operands A and B, the �rst 1 bit adder will focus on the bit n◦0
of both A and B ; and to do that we will have to do some bit manipulations (with right-shifts
and and masks). Besides this detail, the LLVM-IR has all the binary operators we need, and
we just have to follow the equations. We start by creating the A, B, A and B (we don't need
the Cin because we add the two LSB):

// LO_RShifted0 = A >> 0
llvm::Instruction *LO_RShifted0 = llvm::BinaryOperator::CreateLShr(

A, llvm::ConstantInt::get(Int32Ty, 0),
"", bbl

17

);
// LO_RShiftedAnded0 = (A >> 0) & 1 = bit0 of A
llvm::Instruction *LO_RShiftedAnded0 = llvm::BinaryOperator::CreateAnd(

LO_RShifted0, llvm::ConstantInt::get(Int32Ty, 1),
"", bbl

);
// LO_RShiftedAndedNoted0 = ~((A >> 0) & 1) = ~(bit0 of A)
llvm::Instruction *LO_RShiftedAndedNoted0 = llvm::BinaryOperator::CreateXor(

LO_RShiftedAnded0, llvm::ConstantInt::get(Int32Ty, 1),
"", bbl

);

// Same thing for B
llvm::Instruction *RO_RShifted0 = llvm::BinaryOperator::CreateLShr(

B, llvm::ConstantInt::get(Int32Ty, 0),
"", bbl

);
llvm::Instruction *RO_RShiftedAnded0 = llvm::BinaryOperator::CreateAnd(

RO_RShifted0, llvm::ConstantInt::get(Int32Ty, 1),
"", bbl

);
llvm::Instruction *RO_RShiftedAndedNoted0 = llvm::BinaryOperator::CreateXor(

RO_RShiftedAnded0, llvm::ConstantInt::get(Int32Ty, 1),
"", bbl

);

Once we have our input variables ready, we can follow the equation of S we saw earlier:

// Now we follow the equation and we build the successive AND
llvm::Instruction *R_And010 = llvm::BinaryOperator::CreateAnd(LO_RShiftedAndedNoted0, RO_RShiftedAnded0, "", bbl);
llvm::Instruction *R_And020 = llvm::BinaryOperator::CreateAnd(R_And010, llvm::ConstantInt::get(Int32Ty, 1), "", bbl);
llvm::Instruction *R_And110 = llvm::BinaryOperator::CreateAnd(LO_RShiftedAnded0, RO_RShiftedAndedNoted0, "", bbl);
llvm::Instruction *R_And120 = llvm::BinaryOperator::CreateAnd(R_And110, llvm::ConstantInt::get(Int32Ty, 1), "", bbl);
llvm::Instruction *R_And210 = llvm::BinaryOperator::CreateAnd(LO_RShiftedAndedNoted0, RO_RShiftedAndedNoted0, "", bbl);
llvm::Instruction *R_And220 = llvm::BinaryOperator::CreateAnd(R_And210, llvm::ConstantInt::get(Int32Ty, 0), "", bbl);
llvm::Instruction *R_And310 = llvm::BinaryOperator::CreateAnd(LO_RShiftedAnded0, RO_RShiftedAnded0, "", bbl);
llvm::Instruction *R_And320 = llvm::BinaryOperator::CreateAnd(R_And310, llvm::ConstantInt::get(Int32Ty, 0), "", bbl);

// ORing them
llvm::Instruction *R_Or00 = llvm::BinaryOperator::CreateOr(R_And020, R_And120, "", bbl);
llvm::Instruction *R_Or10 = llvm::BinaryOperator::CreateOr(R_And220, R_And320, "", bbl);

// Gotcha, we have the result in R0
llvm::Instruction *R0 = llvm::BinaryOperator::CreateOr(R_Or00, R_Or10, "", bbl);

In the previous example, the variable R0 will hold the result of the addition between the bit
n◦0 of both A and B. Now you repeat those operations 32 times to have a complete adder!

I have written a Python script that generates the 32 bits adder, you can �nd the script
here: generate_homemade_32bits_adder_llvm_ir.py. I also made a little program to emit
the LLVM-IR code able to do the addition, to see how painful and how big the �nal assembly
code is: llvm-cpp-frontend-home-made-32bits-adder.cpp. You can try it out yourself with those
commands:

$ wget ’https://raw.github.com/0vercl0k/stuffz/master/llvm-funz/llvm-cpp-frontend-home-made-32bits-adder.cpp’
$ clang++ llvm-cpp-frontend-home-made-32bits-adder.cpp ‘llvm-config --cxxflags --ldflags --libs core‘ -o emit_adder

18

https://github.com/0vercl0k/stuffz/blob/master/llvm-funz/generate_homemade_32bits_adder_llvm_ir.py
https://github.com/0vercl0k/stuffz/blob/master/llvm-funz/llvm-cpp-frontend-home-made-32bits-adder.cpp

$./emit_adder 2> adder.ll # Now we can emit the LLVM-IR for the home made 32 bits adder
$ wc -l adder.ll
1016 adder.ll # That’s only for one add instruction..:))
$ llc -O0 adder.ll -o adder.s # We can also generate the x86 assembly
$ wc -l adder.s
1956 adder.s # Instead of one add instruction :P
$ clang adder.s -o adder
$./adder 137 1000 # And we can run it
Result: 1137
$./adder 4294967295 1338
Result: 1337

We are now able to implement a home made 32 bits adder, and I hope you saw that it
generates a ton of x86 assembly line ; perfect for us. But now we want to modify the content of
all basic blocks with our LLVM pass:

1. match all the add instructions in all the basic blocks of each function. To do so, you can
iterate through each basic block, then through each instruction. Finally you have just to
match what type of instruction it is.

2. replace them all with our adder. You insert your di�erent instructions just before the
add instruction you want to replace. Then, the important thing is to replace the old add

instruction with the new using the function llvm::ReplaceInstWithInst.

Another dumb thing I have implemented is to decompose one add instruction into hundred
others as you can see on �gure 2.3. I did that to introduce more add in the program, this way
if I run a second time my obfuscation pass I would be able to obfuscate heavily those ones with
the home made 32 bits adder.

Figure 2.3: Tons of add that could be heavily-obfuscated with a home made adder.

2.3.2 Mess with other instructions

The idea here is the same: you want to write an instruction in a di�erent way but you want
to keep the same result ; because you don't want to crash your program. Easy targets are

19

https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/Utils/BasicBlockUtils.h?view=markup

the binary operators like mul, sub, xor, etc. For example, you can recode the xor instruction
only with not, or and and instructions. You can also unroll a mul instruction into several add
instructions. This is the part where you have to be creative, and where you have to express all
the anger you have for the world. This is also the not-so-fun part: that's why you will �nd in
my PoC only two or three instructions obfuscated (it's enough for the demo crackme :-)).

Note that you can also use Z3py to be sure your transformations are equivalent, or not.

In [1]: from z3 import *
In [2]: a = BitVec(’a’, 32)
In [3]: b = BitVec(’b’, 32)
In [4]: prove(a^b == (a&(~b)|(~a)&b))
proved

2.3.3 Inserting x86 assembly

Another interesting thing was to be able to add directly assembly code for a speci�c CPU target.
There is a dedicated class in the LLVM code base to do exactly that: llvm::InlineAsm. Then
you just have to build a call instruction to trigger the execution of your assembly code.

define void @main() {
call void asm sideeffect "int3", "~{dirflag},~{fpsr},~{flags}"() #1, !srcloc !0
ret void

}

To add a bit of fun in the demo-crackme, I decided to implement a simple ptrace-based anti-
debug. I'm not really a linux guy, but I already spent some days to debug stu� in GDB and it's
really not fun when you have fork and ptrace stu� everywhere ; so I wanted to do something
with those two. In the gnu debugger, you can either follow the child process, or the parent
process (the default option) via the follow-fork-mode option. Here was my simple idea:

1. The process will fork to create another process

2. The son process will try to attach itself to the parent process using ptrace

(a) If it works, that's OK ; we will continue the �ow of execution in the son (because the
user will step in the parent, and we are nasty)

(b) If it doesn't work, we end the game: we kill both the parent and ourself

3. The father will wait. He will be killed anyway by the son, to let the son execute itself

That worked quite great in my head, but when I did try to test that on my GDB it just didn't
work. After some hours of debugging, I �nally noticed my .gdbinit �le were telling to the
debugger to follow the child process instead of the parent. That means when I will try to ptrace
the parent, GDB won't be attached to the parent anymore but it will be attached to the son ;
that's why it didn't work in GDB but did work with strace.

20

http://rise4fun.com/z3py
https://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/IR/InlineAsm.h?view=markup
http://www.gnu.org/software/gdb/
http://linux.die.net/man/2/fork
http://linux.die.net/man/2/ptrace
http://linux.die.net/man/2/ptrace
http://linux.die.net/man/2/ptrace
http://linux.die.net/man/1/strace

void main()
{

unsigned int pid, ppid;
printf("Anti follow-fork-parent!\n");

pid = fork();
if(pid == 0)
{

printf("[Son] Hi!\n");
ppid = getppid();
if(ptrace(PTRACE_ATTACH, ppid, 0, 0) < 0)
{

printf("[Son] Father is debugged, let’s kill him!");
kill(ppid, SIGKILL);
exit(1);

}
else
{

waitpid(ppid, NULL, 0);
printf("[Son] Continue the son, detaching from the father & killing him\n");
ptrace(PTRACE_DETACH, ppid, 0, 0);
kill(ppid, SIGKILL);

}
}
else
{

printf("[Father] Hi!, waiting my son attach\n");
waitpid(pid, NULL, 0);

}
printf("Continuing now..\n");
/* do stuff */
printf("Done!\n");

}

So I added to my test �le the exact same steps, but the way around: the father will try to attach
itself on the son to detect the follow-child mode of gdb. Finally, I ended up concatenating the
two in order to detect both follow-child and follow-parent behavior. Here is the second part:

void main()
{

unsigned int pid;
printf("Anti follow-fork-child\n");
pid = fork();
if(pid == 0)
{

printf("[Son] Hi, waiting my father..\n");
waitpid(getppid(), NULL, 0);

}
else
{

if(ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
{

printf("[Father] Son is debugged, kill him & kill myself!");
kill(pid, SIGKILL);
exit(0);

}

21

else
{

waitpid(pid, NULL, 0);
printf("[Father] Continue the father, detaching from the son & killing him\n");
ptrace(PTRACE_DETACH, pid, 0, 0);
kill(pid, SIGKILL);

}
}

printf("Continuing now..\n");
/* do stuff */
printf("Done!\n");

}

To sum up, it means you can also mess with the assembly and write really speci�c things
for speci�c targets. Just make sure about the side e�ects of your assembly instructions, because
again you don't want to break your program. Of course my previous examples are a bit dumb,
you can just nop the whole things very easily, but whatever.

2.3.4 Showcase: Kryptonite crackme

Yes, what was the best thing to do to test this little obfuscater ? Try it out on a little challenge
for sure!

The original one is coded is 60 lines of plain C and it is not using system speci�c stu�. The
purpose is simple: �nd the password that gives the 'Good boy' message ; this is not a patchme

challenge. You will �nd:

� A Linux x86 binary with the little anti-debugs explained earlier (tested on a Debian 6.0
x86)

� A Linux x64 binary without anti-debugs (tested on a Debian 6.0 x64)

� A Windows x64 binary without anti-debugs (tested on a Windows 7 x64)

As an example, the linux binary has been generated with the following commands:

$ cp kryptonite-crackme.original.ll kryptonite-crackme.ll

$ opt -S -load ./llvm-functionpass-kryptonite-obfuscater.so -kryptonite kryptonite-crackme.ll -o \
kryptonite-crackme.opti.ll
$ mv kryptonite-crackme.opti.ll kryptonite-crackme.ll

$ opt -S -load ./llvm-functionpass-kryptonite-obfuscater.so -kryptonite -heavy-add-obfu -enable-anti-dbg 66 \
kryptonite-crackme.ll -o kryptonite-crackme.opti.ll
$ mv kryptonite-crackme.opti.ll kryptonite-crackme.ll

$ llc -O0 -filetype=obj -march=x86 kryptonite-crackme.ll -o kryptonite-crackme.o
$ clang -static kryptonite-crackme.o -o kryptonite-crackme
$ strip --strip-all ./kryptonite-crackme

22

$ ls -la ./kryptonite-crackme
-rwxr-xr-x 1 overclok overclok 18M 22 juil. 23:19 ./kryptonite-crackme

All binaries are quite fat and awful to look at. Remember that was the purpose of our obfuscater
:-P.
After one or two weeks, I will publish the original source of the crackme on my github account.
If someone breaks it, I will be happy to o�er him/her a beer somewhere in sometime!

23

2.4 Final words

Anyway, I hope I really gave you nasty ideas, and you want now to play with LLVM. It is a
really powerful/cool tool, so feel free to hack it ; but don't forget to publish your sources :-).
There are also a ton of ideas I wanted to try, if you have the courage to implement them go
ahead:

� play with the �oating arithmetic, hopefully the compiler will generate ugly SSE instructions
; maybe we can even reuse what some of the work skier_t already did

� obfuscate even the standard functions and not only our functions

� try to generate a kernel module, or a Windows driver executable ; would be awesome

� doing some complicated things like CFG �attening, hide the end of the loops, code en-
cryption, etc

� obfuscate C++ code, I guess it will be even scarier and bigger

� string encryption

� re-implement manually other instructions the same way we did with the add instruction

� add integrity checks several watch-dog threads, to prevent the user to patch/debug the
binary

� etc.

This is the end now guys, I hope you enjoy the read, and if you have any remarks, advises: shoot
me an email or DM me on twitter.

By the way, all the binaries have been uploaded here, and the source of kryptonite is here ;
have fun! I would be really happy to see solutions to defeat that massive-heavy obfuscations!

Special thanks to those guys: @elvanderb, @gentilkiwi, @__x86 and @agixid.

24

https://twitter.com/skier_t
https://github.com/jbremer/ssexy
http://download.tuxfamily.org/overclokblog/Obfuscation%20of%20steel%3a%20meet%20my%20Kryptonite/binaries/
https://github.com/0vercl0k/stuffz/blob/master/llvm-funz/kryptonite/llvm-functionpass-kryptonite-obfuscater.cpp
https://twitter.com/elvanderb
https://twitter.com/gentilkiwi
https://twitter.com/__x86
https://twitter.com/agixid

	LLVM's overview
	Introduction
	The pipeline
	Frontend
	Emitting LLVM-IR via the C API

	Transformation passes
	Backend
	Conclusion and going further

	Kryptonite
	Introduction
	Writing an optimization pass
	LLVM-IR obfuscation
	Obfuscate add instructions
	Theory: home made 32 bits adder
	Practice: Emit the adder with the LLVM frontend API

	Mess with other instructions
	Inserting x86 assembly
	Showcase: Kryptonite crackme

	Final words

