
 1

fork() step by step...
Process 1000

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 2

fork() step by step...
Process 1000

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000

 3

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 4

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 5

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 6

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 7

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 8

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000
 PARENT : PID=1000

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 9

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000
 PARENT : PID=1000
 Goodbye form process 1000

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 10

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000
 PARENT : PID=1000
 Goodbye form process 1000

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 11

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000
 PARENT : PID=1000
 Goodbye form process 1000

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 12

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000
 PARENT : PID=1000
 Goodbye form process 1000
 Hello again form process 1001

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 13

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000
 PARENT : PID=1000
 Goodbye form process 1000
 Hello again form process 1001

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 14

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000
 PARENT : PID=1000
 Goodbye form process 1000
 Hello again form process 1001
 CHILD : PID=1001

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 15

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000
 PARENT : PID=1000
 Goodbye form process 1000
 Hello again form process 1001
 CHILD : PID=1001

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 16

fork() step by step...
Process 1000 (PARENT)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Standard output (stdout):
 Hello form process 1000
 Hello again form process 1000
 PARENT : PID=1000
 Goodbye form process 1000
 Hello again form process 1001
 CHILD : PID=1001
 Goodbye form process 1001

Process 1001 (CHILD)

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

 17

fork() step by step...

int main(int argc, char * argv[])
{
 // Reached by parent process only (child doesn't exist yet)
 fprintf(stdout, "Hello form process %ld\n", (long) getpid());

 pid_t proc_id = fork();

 if(proc_id == -1) exit(1); // Error...

 // Reached by both process (parent and child)
 fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

 if(proc_id == 0) {
 // Reached by child process only
 fprintf(stdout, "CHILD : PID=%ld\n", (long) getpid());
 } else {
 // Reached by parent process only
 fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
 }

 // Reached by both process (parent and child)
 fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Child Parent

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17

