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fork() step by step...
Process 1000

int main(int argc, char * argv[])
{
    // Reached by parent process only (child doesn't exist yet)
    fprintf(stdout, "Hello form process %ld\n", (long) getpid());

    pid_t proc_id = fork();

    if(proc_id == -1) exit(1);      // Error...

    // Reached by both process (parent and child)
    fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

    if(proc_id == 0) {
        // Reached by child process only
        fprintf(stdout, "CHILD  : PID=%ld\n", (long) getpid());
    } else {
        // Reached by parent process only
        fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
    }

    // Reached by both process (parent and child)
    fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}
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{
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        fprintf(stdout, "CHILD  : PID=%ld\n", (long) getpid());
    } else {
        // Reached by parent process only
        fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
    }

    // Reached by both process (parent and child)
    fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}
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fork() step by step...

int main(int argc, char * argv[])
{
    // Reached by parent process only (child doesn't exist yet)
    fprintf(stdout, "Hello form process %ld\n", (long) getpid());

    pid_t proc_id = fork();

    if(proc_id == -1) exit(1);      // Error...

    // Reached by both process (parent and child)
    fprintf(stdout, "Hello again form process %ld\n", (long) getpid());

    if(proc_id == 0) {
        // Reached by child process only
        fprintf(stdout, "CHILD  : PID=%ld\n", (long) getpid());
    } else {
        // Reached by parent process only
        fprintf(stdout, "PARENT : PID=%ld\n", (long) getpid());
    }

    // Reached by both process (parent and child)
    fprintf(stdout, "Goodbye form process %ld\n", (long) getpid());
}

Child Parent
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