
ESP-r Developers’ Quality Assurance Checklist
Last updated: July 6, 2007

1. Synopsis
This document outlines the quality assurance testing procedures that you must be complete before contributing
your work to the ESP-r archive.
The objectives of these procedures are to:

a) demonstrate to other ESP-r developers and users that your source code additions and modifications
function as you expect them to,

b) ensure that the changes you’ve made behave consistently on all supported platforms, and
c) ensure that your changes do not interrupt the work of other ESP-r users and developers around the

world.
Companion documents
This document makes frequent reference to other ESP-r documents, all of which are available at
http://www.esru.strath.ac.uk/Programs/ESP-r_central.htm:

a) The document ESP-r Coding Guidelines outlines programming conventions that your code contribu-
tions must adhere to.

b) The document An overview of Subversion for ESP-r Central Users describes the use of subversion to
maintain ESP-r source code.

Revision history
This document is under versioning control; suggestions and contributions are strongly encouraged. The troff-for-
matted source file for the latest version can be obtained at the following url:

https://esp-r.net/espr/esp-r/branches/development_branch/src/archive/QA_checklist.trf

2. Placing your code under versioning control
In this section, you’ll commit your code to your sub-branch, and update your branch to reflect recent changes in
the repository.

1. If you have not already done so, commit your code to your sub-branch following the directions in An
Overview of Subversion for ESP-r Central Users.

2. Move to a new directory, and checkout a fresh copy of your sub-branch. Compile ESP-r and be sure
to include support for XML output. Ensure that no compilation errors are reported. If compilation
errors are reported, check to see that all of your modified files have been correctly committed to your
sub-branch.

3. Synchronize your branch with the development branch, according to the directions in the document:
An Overview of Subversion for ESP-r Central Users. IMPORTANT: Use a clean (that is, unmodi-
fied) copy of your branch when synchronizing with the development branch. If you commit your
contributions along side revisions from the development branch, the archivist will be unable to incor-
porate your changes into the development branch!

4. Resolve any conflicts reported during the merge, and compile your updated branch with support for
XML output enabled. Ensure that no compilation errors are reported.

3. Code standards
These steps will help ensure your code meets standards for inclusion in the ESP-r Archive, and that your modifi-
cations don’t conflict with recent contributions made by other contributors.



-2-

5. Inspect your code for consistency with the ESP-r Coding Guidelines.
6. After each commit to your sub-branch, you will receive a test report informing you if ESP-r can com-

pile in its current state, and highlighting any dubious FORTRAN syntax introduced by your last revi-
sion. Read these reports carefully: you must address any new errors or warnings appearing in the
static-analysis portion of the report.

4. New features and modifications
These steps will ensure your code behaves as you intended, and that other ESP-r users can use your code with
confidence.

7. Select a test case from the test-suite (in the ./tester/test_suite folder) that exercises the source code
you’ve modified, or if you’ve added new features to ESP-r, create a new test-case exercising your
modifications. Be sure to create a simulation preset within the test case named test.

8. Exercise the ESP-r binaries you’ve modified using this test case on your platform of choice. Ensure
your modifications behave as you expect.

9. If your modifications include significant new features (such as a new model), document these results
in a written report. Conference papers, theses, reports, and ascii files are all acceptable forms of doc-
umentation provided they show your model performs as expected.

10. If your modifications include additions or changes to ESP-r’s interface, throughly exercise the menus
you’ve created. Attempt to test every possible combination of inputs and, if possible, ask a colleague
unfamiliar with your changes to test the menus.

5. Automated Testing
The automated_tests.pl script (in the tester/scripts folder) will help you identify errors in ESP-r introduced by
your revisions. automated_tests.pl will test that the version of ESP-r compiles correctly, and determine if your
revisions have introduced dubious Fortran syntax or affect simulation results. automated_tests.pl makes use of
the tester.pl regression script, and the Forcheck static analysis program. These tools can also be used individu-
ally; their use is described in Appendix A.

11. From the tester/scripts folder, inv oke the following command:

$ ./automated_tests.pl -b development_branch -b <your sub-branch name> -v

If you do not have access to the Forcheck static analysis utility, inv oke the following command:

$ ./automated_tests.pl -b development_branch -b <your sub-branch name> -v --skip-forcheck

Be patient—these tests will require several hours.
12. When finished, automated_tests.pl will produce an ASCII report, titled automated_tester_output.txt.

This report contains three sections: results from static analysis tests; results from compilation tests;
and results from a regression test. Read these sections carefully:
a) Your modifications should not introduce any new errors or warnings in the static analysis sec-

tion of the report.
b) Your branch should compile in all three graphics library configurations (GTK, X11 and no-X).
c) Your modifications should not introduce any differences into the test results reported from the

regression test. If differences are reported, ensure they can be attributed to your intended modifi-
cations.

d) Your modifications should not slow bps down appreciably (review the ‘‘dt-CPU (%)’’ column in
the regression test results).

If the automated tester report identifies errors, address them before submitting your code for incorpo-
ration into development branch.

6. Portability Testing (Optional)
These steps will help ensure your code behaves consistently across all platforms on which ESP-r is supported
(currently SUN Unix, SGI, Linux, CYGWIN, MINGW and Mac 4). During portability testing, the predictions
of a test bps binary are compared with test bps binaries compiled on other platforms.



-3-

altering ESP-r libraries or installation procedures.
13. Create a results set archive using bps as built from your sub-branch (be sure to enable XML output).

The tester.pl script will generate a results set archive for you when invoked with the following com-
mand:

$ ./tester.pl /path/to/bps --create_historical_archive result_set.tar.gz -v

13. If you have access to other supported platforms, check-out a copy of your sub-branch on each of
these platforms and compile ESP-r. Ensure that you enable XML output and that no compilation
errors are reported.

14. Copy your test case results set archive onto each of the the alternate platforms you used in step 7. On
each platform, invoke the tester.pl script to exercise your bps code and compare its output to the
result set archive using the following command:

$ ./tester.pl /path/to/bps --historical_archive result_set.tar.gz -v

15. Review the test report produced by tester.pl (bps_test_report.txt) and ensure that no differences are
reported.

7. Submitting Your Code to the ESP-r Archivist
These next steps describe how to submit your code for incorporation into the development branch.

16. Prepare a list of the revisions on your sub-branch that comprise the changes you wish to include in
the development branch. The list of svn revisions should not include revisions that merge code from
development branch. Often, the relevant revision numbers on the branch will be specified as a set of
intervals. You can review the complete set of revisions made on your sub-branch using the subver-
sion command:

$ svn log --stop-on-copy

Note that when specifying an interval of revisions, the first revision must be the revision prior to your
commit. For instance, to include revisions 22 and 23 in development branch, you must specify the
rang 21–23.

17. Email the ESP-r archivist (Ian Beausoleil-Morrison, Ian_Beausoleil-Morrison@carleton.ca) using the
template provided in src/archive/code-contribution.txt.

Appendix A: Additional testing tools
Forc heck Static Analyzer
The Forcheck static analyzer1 inspects your code for inconsistencies and errors that might otherwise be missed
by compilers. To inv oke Forcheck, you’ll first need to a copy of bps with the debugging symbols included. To
do so, answer ‘‘yes’’ at the Install script prompts: ‘‘Retain debugging symbols? (y/n) [y]’’.

Next, move to the esru folder corresponding to the ESP-r binary you wish to test. For instance, to test prj,
move to the folder ‘‘esruprj’’. To test an ESP-r binary when linked to the X11 graphics library, inv oke Forcheck
using the following command:

$ forchk -I ../include *.F ../lib/esru_ask.F ../lib/esru_blk.F ../lib/esru_libX11.F

To test an ESP-r binary when linked with the GTK library, inv oke forcheck using the following command

$ forchk -I ../include *.F ../lib/esru_ask.F ../lib/esru_blk.F ../lib/esru_libGTK.F

Forcheck will produce a report identifying errors in your source. You may expect this report to warn of incon-
sistencies in other portions of ESP-r, but pay particular attention to portions of the report pertaining to files
you’ve changed.
Forcheck output is generally verbose, and can be even more so if it’s not configured to respect language exten-
tions available in modern compilers. A Forcheck configuration file (esp-r.cnf) suitable for use with ESP-r is
available in the tester/scripts folder; to use it you must first set the FCKCNF environment variable. Using the
bash shell, enter the following command:

$ export FCKCNF="/path/to/tester/scripts/esp-r.cnf"

1 http://www.forcheck.nl/



-4-

tester.pl Regression tester
The tester.pl regression tester will exercise bps binaries over various test cases, and quantitatively compare the
results. It can also save test results in compressed archives for use on other platforms. tester.pl can be found in
the tester/scripts folder; information on its use is available by running:

$ tester.pl --help


