Fonctions de plusieurs variables

- 1. Soit f la fonction définie sur \mathbb{R}^2 par : $f(x,y) = \frac{y^2}{x}$ si $x \neq 0$ et f(0,y) = y
 - (a) Montrer que f admet des dérivées partielles au point (0,0).
 - (b) Montrer que f n'est pas continue en (0,0).
- 2. (a) Dans chacun des cas suivants, déterminer toutes les fonctions f de classe \mathscr{C}^1 sur \mathbb{R}^2 telles que :

$$a)\,\forall (x,y)\in\mathbb{R}^2\,,\,\frac{\partial f}{\partial x}(x,y)=0\qquad \qquad b)\,\forall (x,y)\in\mathbb{R}^2\,,\,\frac{\partial f}{\partial y}(x,y)=0$$

(b) Déterminer toutes les fonctions f de classe \mathscr{C}^2 sur \mathbb{R}^2 telles que :

$$a)\,\forall (x,y)\in\mathbb{R}^2\,,\,\frac{\partial^2 f}{\partial x\,\partial y}(x,y)=0\qquad \qquad b)\,\forall (x,y)\in\mathbb{R}^2\,,\,\frac{\partial^2 f}{\partial x^2}(x,y)=0$$

- 3. On considère la fonction f définie sur \mathbb{R}^2 par : $f(x,y)=x^2y^2-x^2-y^2+1$
 - (a) Déterminer les dérivées partielles premières de f.
 - (b) Déterminer la différentielle de f en un point $(a, b) \in \mathbb{R}^2$.
 - (c) Déterminer le(s) point(s) critique(s) de f.
 - (d) Déterminer les extrema de f. Pour l'étude de f au voisinage du point (1,1), on pourra calculer f(x,x) et f(x,2-x) pour $x \in]1;1,1[$.
- 4. On dit qu'une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ est homogène de degré d si :

$$\forall (x,y) \in \mathbb{R}^2, \forall t \in \mathbb{R}^*_{\perp}, f(t x, t y) = t^d f(x,y)$$

- (a) Déterminer un exemple de fonction homogène sur \mathbb{R}^2 de degré 1.
- (b) On suppose que f est homogène de degré d et de classe \mathscr{C}^1 sur \mathbb{R}^2 ; montrer que :

$$\forall (x,y) \in \mathbb{R}^2, \ x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = d \times f(x,y)$$

(c) On suppose que f est homogène de degré d et de classe \mathscr{C}^2 sur \mathbb{R}^2 ; montrer que :

$$\forall (x,y) \in \mathbb{R}^2, \ x^2 \frac{\partial^2 f}{\partial x^2}(x,y) + 2xy \frac{\partial^2 f}{\partial x \partial y}(x,y) + y^2 \frac{\partial^2 f}{\partial y^2}(x,y) = d(d-1)f(x,y)$$

5. Déterminer toutes les fonctions f de classe \mathscr{C}^1 sur \mathbb{R}^2 vérifiant l'équation :

$$\forall (x,y) \in \mathbb{R}^2, \frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) = 2$$

On pourra poser $F(x,y) = f\left(\frac{x+y}{2}, \frac{x-y}{2}\right)$ et chercher une équation différentielle simple vérifiée par F.

6. On se propose de déterminer toutes les fonctions f de classe \mathscr{C}^2 sur \mathbb{R}^2 vérifiant l'équation :

$$\forall (x,y) \in \mathbb{R}^2, \frac{\partial^2 f}{\partial x^2}(x,y) - \frac{\partial^2 f}{\partial y^2}(x,y) = 0$$

- (a) Soit $g: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 sur \mathbb{R} . On pose f(x,y) = g(x+y,x-y). Calculer $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$ et $\frac{\partial^2 f}{\partial y^2}$ en fonction des dérivées partielles de g.
- (b) En déduire l'ensemble des solutions de l'équation proposée.

- 7. Dans chacun des cas suivants, dire si la forme différentielle proposée est exacte sur D. Si c'est le cas, en donner une primitive.
 - (a) $D = \mathbb{R}^2$ et $\omega_{(x,y)} = y \, \mathrm{d}x + x \, \mathrm{d}y$.

(b)
$$D = \mathbb{R}_+^* \times \mathbb{R}$$
 et $\omega_{(x,y)} = \left(\operatorname{Arctan} \left(\frac{y}{x} \right) - \frac{xy}{x^2 + y^2} \right) dx + \frac{x^2}{x^2 + y^2} dy$.

- (c) $D = \mathbb{R}^3$ et $\omega_{(x,y,z)} = y z e^{xz} dx + e^{xz} dy + x y e^{xz} dz$.
- 8. (a) Déterminer une fonction φ de classe \mathscr{C}^1 sur \mathbb{R}_+^* pour que la forme différentielle ω suivante soit exacte sur l'ensemble ouvert $(\mathbb{R}_+^*)^3$:

$$\omega_{(x,y,z)} = 2x z \varphi(z) dx - 2y z \varphi(z) dy + (y^2 - x^2) \varphi(z) dz$$

- (b) Déterminer alors une fonction f telle que la différentielle de f soit la forme différentielle ω .
- 9. On considère le système d'équations différentielles :

$$(S): \begin{cases} u'(t) = (v(t))^2 \\ v'(t) = \sin(u(t)) \end{cases}$$

où u et v sont deux fonctions de la variable réelle t.

- (a) Déterminer les solutions constantes de (S).
- (b) Soit $V: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 sur \mathbb{R}^2 . Écrire une condition portant sur les dérivées partielles de V pour que la fonction $t \mapsto V(u(t), v(t))$ soit constante lorsque le couple (u, v) est solution de (\mathcal{S}) .
- (c) Montrer que la fonction V_0 définie sur \mathbb{R}^2 par $V_0(x,y) = \cos(x) + \frac{y^3}{3}$ vérifie la condition précédente.
- (d) On admet l'unicité de la solution (α, β) de (S) vérifiant la condition initiale $\alpha(0) = 0$ et $\beta(0) = -\sqrt[3]{6}$. En utilisant la question précédente, donner une relation entre $\alpha(t)$, $\beta(t)$, $\alpha(0)$ et $\beta(0)$. En déduire l'expression de β en fonction de α .
- 10. Soient φ et ψ deux fonctions de classe \mathscr{C}^2 sur \mathbb{R}_+^* et à valeurs dans \mathbb{R} .

Soit f la fonction définie sur $\left(\mathbb{R}_+^*\right)^2$ par : $f(x,y) = \sqrt{xy}\,\varphi\left(\frac{y}{x}\right) + \psi(xy)$

Démontrer que : $\forall (x,y) \in (\mathbb{R}_+^*)^2$, $x^2 \frac{\partial^2 f}{\partial x^2}(x,y) - y^2 \frac{\partial^2 f}{\partial y^2}(x,y) = 0$.

11. Déterminer les extrema locaux de $f: \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$f(x,y) = (x-1)(y-1)e^{x+y} + (x-1)e^x + (y-1)e^y$$

On pourra exprimer f à l'aide de la fonction définie par $\varphi(t) = (t-1)e^t + 1$.