SLang - the Next Generation

Tutorial

Christian Bucher, Sebastian Wolff Center of Mechanics and Structural Dynamics Vienna University of Technology

November 8, 2010

0.1 Analysis of imported FE mesh

This example shows the import and analysis of a tetrahedral volume mesh generated by gmsh. The geometry is defined as shown in Fig. ??. It is them meshed with 5515 4-node tetrahedral elements. The structure is

Figure 1: Geometry of block with cylindrical hole

supported on one side. The support elements are defined as physical group in gmsh. On the opposite side, a transverse load is applied (in y-direction).

The procedure to arrive at the solution of this problem is given in the following script.

```
1
   ——[[
2 SLangTNG
  Test for Finite Element analysis
3
4
  FE model imported from Gmsh
  (c) 2009 Christian Bucher, CMSD-VUT
5
6
   --11
7
8
      import the model (Tetrahedra vor volumes, triangles for surfaces) and set all DOF'
9
       s to available
10
     struc=tngfem.TNGStructureImportGmsh("block.msh")
     struc: SetAvailDof(1, 1, 1, 1, 1, 1)
11
12
13
     Get the element group containing the support surface and convert to node group
     support=struc : GetGroup(1)
14
15
     nsup=support : ToNodeGroup(101)
16
     remove all availabled DOF's for support
17
     struc: SetAvailDof(0, 0, 0, 0, 0, 0, nsup:GetMemberList())
18
19
      Get the element group carrying the distributed load (triangles)
20
21
     load=struc:GetGroup(2)
22
     loadList = load:GetMemberList()
23
24
      Get the element group defining the body (tetrahedra)
25
     evol=struc:GetGroup(3)
26
     evolList = evol:GetMemberList()
27
     Define section and material properties (Gmsh provides only the mesh) ss=struc: AddSection(301, "SHELL", 0, 0.01)
28
29
     ss: SetColor (0,200,200,255)
30
31
     struc:SetSection(301, loadList)
32
     struc:SetSection(301, support:GetMemberList())
33
34
     s=struc: AddSection (300, "VOLUME", 0)
     s:SetColor(255,0,0,255)
struc:AddMaterial(800, "LINEAR_ELASTIC", 1, .3, 1)
35
36
37
     struc:SetMaterial(800, evolList)
38
     struc:SetSection(300, evolList)
39
40
      Assign global DOF numbers
41
     nd=struc:GlobalDof()
```

```
42
43
      define distributed load in global y-direction
44
     force=tmath.ReadMatrix({0},{1},{0}))
45
46
     Assemble global load vector
47
     F=struc: GlobalForce (force, loadList)
48
49
      Assemble global stiffness matrix
50
     K=struc:SparseStiffness(evolList)
51
52
      Solver for displacements
     U=K: Solve(F)
53
54
     - Show deformed structure (only volume elements are set visible)
55
56
     struc : SetDofDisplacements(U)
57
     vis=tnggraphics.TNGVisualize(40, 40, 1100, 800, "Structure")
58
59
     vis: Lighting (true)
60
     vis: Perspective(true)
61
     vis: SetAngles(20, -20,0)
     vis: Draw(struc, .05)
62
63
64
      Add a vector plot showing the displacements
     U2 = struc : GetAllDisplacements()
65
66
     vis:Vector(struc, U2, .05)
     vis:File("block_def.pdf")
vis:File("block_def.png")
67
68
69
70
     -11
     Compute and visualize stresses
71
72
     The stresses are computed in ElementStressresult(k...). Here
73
     the meaning of k is:
74
       0 v.Mises stress
75
       1 s_xx
76
       2 s_yy
77
       3 s_zz
78
       4 t_{-}xy
79
       5 t_- \times z
80
       6 t_-yz
     -11
81
     struc:SetVisible(false)
82
83
     struc:SetVisible(true, evolList)
     sv=tnggraphics.TNGSuperVisualize(40, 40, 1100, 800, "Stresses")
84
85
     for i=1,6 do
       v=sv: AddVisualize("Stress"..i, math.mod(i-1,2)==0)
stress = struc: ElementStress(i)
86
87
88
       v: Perspective(true)
       v: Palette(true)
89
90
       v: Lighting(true)
91
       v: SetAngles(20, -10, 0)
       v: ElementResult (struc, stress, true, 0.05)
92
93
       v:Zoom(1.3)
94
     end
95
     sv: File("block_stress.pdf", 3)
```

The deformed structure is shown in Fig. ??. The stresses are shon in Fig. ??.

Figure 2: Deformation of block with cylindrical hole

Figure 3: Stresses in block with cylindrical hole