
POK Developper Guide

POK Team

May 25, 2013

Contents
1 About this manual 1

1.1 About POK . 1

2 Coding guidelines 1

3 Source organization 2
3.1 kernel . 2
3.2 libpok . 3

4 Optimization (about the POK CONFIG OPTIMIZE FOR GENERATED CODE) 3

5 Documentation 4
5.1 User Guide . 4
5.2 Code documentation . 4

6 Submit a patch 5

7 Algorithms guidelines 5

8 GDB’ing POK with QEMU 5

9 Commit on the SVN 6

10 Join the POK developper network ! 7

1 About this manual
This manual provides information about the development of POK. It indicates coding
rules and naming convention so that everybody could improve POK by modifying its
source code.

1

1.1 About POK
POK is a free operating system compliant with the ARINC653 and MILS standards. It
provides time and space partitioning to isolate software in partitions. POK is released
under the BSD licence and thus, could be modified and used for commercial as well
as non-commercial use. To have more information about the licence of the projet, see
POK website1.

2 Coding guidelines
There are our coding guidelines:

1. Prefix for types: pok

2. Prefix for functions : pok

3. Prefix for maccro: POK but not for conditional compiling:

(a) When the code needs a functionnality, we define a maccro with the prefix
POK NEEDS my-functionnality

(b) When a maccro configures the kernel or user code, it has the prefix
POK CONFIG my-config-directive

4. Indentation for ANY loop/condition

5. Commits must be as small as possible

6. Reduce machine-dependent code as more as possible

7. Each header-file must begin with #ifdef POK SUBCATEGORY FILENAME H

8. Loop and condition style is :

condition
{
}

and NOT

condition {
}

9. To commit, do not invoke svn commit but issue make commit at the root of the
sources directory. To commit, lftp is required.

10. If you introduce a new function for the userland, you must add relevant docu-
mentation in the doc/userguide/ directory.

1http://pok.gunnm.org

2

3 Source organization
At the root directory, two main directories are available: kernel and libpok. We
detail the organization and the guidelines for each subdirectory of kernel and libpok.

3.1 kernel
In the kernel, sources files are supposed to contain few lines of code. In consequence,
there is one file for each service.

• arch: contains arch-dependent code. There is one directory for each architecture
and one subdirectory for each BSP. For example, files for the x86 architecture
and the x86-qemu BSP are located in the arch/x86/x86-qemu directory.

• core: contains the core functionnality of POK - threads, partitions, health mon-
itoring,

• include: contains headers files. The organization of header files is the same
than source files. So, you will find core, middleware or arch directories in the
include directory.

• libc: provides some functionnalities for printing things. Functions located in
this directory are here mainly for debugging purposes.

• middleware: contain the code for inter-partitions communication (sampling and
queueing ports). It also contains some functionnalities about virtual ports rout-
ing.

3.2 libpok
In libpok, sources files are supposed to contain more code than in kernel. So, there is
one file for each functions. There is the organization and purpose of each directory.

• arch: contains architecture dependent files. Unlike the kernel, there is no need
to separate each BSP so there is no subdirecties for each architecture.

• arinc653: contains the implementation of the ARINC653 layer.

• core: contains the main functionnality of POK. It contains the thread service,
lockobjects, semaphores, events.

• drivers: contains device drivers implemented in POK.

• include: contains header files. As in the kernel, the structure of this directory
follow the structure of the sources.

• libc: contains the C-library of POK (stdio, stdlib and so on).

• libm: contains the libmath backported from NetBSD.

3

• middleware: contains sources for sampling and queueing ports (interfacing
with the kernel - inter-partition communication) but also blackboard and buffers
(intra-partition communication)

4 Optimization (about the POK CONFIG OPTIMIZE FOR GENERATED CODE)
Systems generated with POK must be lightweight and keep a small memory footprint
to be compliant with embedded requirements and ensures a good code coverage. When
a system is written by hand, the libpok layer contains all its functionnalities. It is more
convenient for the developper, he does not have to specify which functions he needs.

However, when a system is generated from AADL models, it defines the maccro
POK CONFIG OPTIMIZE FOR GENERATED CODE and sets its values to 1. Its means that
the code specifies precisely which functions are used. Then, the generated code speci-
fies which services it needs using POK NEEDS* maccros. For example, the POK NEEDS LIBC STDIO
specifies that it needs all functions of libc/stdio.

Then, each function of libpok is surrounded with a POK CONFIG NEEDS FUNC* or
POK CONFIG NEEDS *. You have to introduce that in your
code when you introduce new services in POK.

Then, the file in include/core/dependencies.h specifies which functions are
needed for each service. When the POK CONFIG OPTIMIZE FOR GENERATED CODE is
not set, all functions are enabled (default behavior). But is defined, functions are care-
fully activated, depending on their service.

5 Documentation

5.1 User Guide
Each improvement and enhancement in kernel or libpok must be documented in the
userguide (see doc/userguide in the POK sources) to keep a consistency between the
documentation and the sources.

5.2 Code documentation
The code must be documented using doxygen. At each release, we issue a documenta-
tion in HTML and PDF using code documentation. The following paragraphs indicate
at least what information should be included in the sources at least. Keep in mind that
the more the code is documented, the best it is for users.

Beginning of a file
Specify the file, the author, the data and a brief description. You can have an exam-

ple in kernel/core/thread.c. For example, the following comments provide these
informations. It should be located at the beginning of the file.

4

/**
* \file core/thread.c
* \author Julien Delange
* \date 2008-2009
* \brief Thread management in kernel
*/

Functions
You MUST document each function and details what the function do. You specify

that with a comment just before the function. The comment must begin with /**.
There is an exemple for the function pok thread init:

/**
* Initialize threads array, put their default values
* and so on
*/

void pok_thread_init(void)
{
...

Global variables
Each global variable must be documented. As functions, you put a comment just

before the global variable. This comment must begin with /**. There is an example
for the global variable pok threads:

/**
* We declare an array of threads. The amount of threads
* is fixed by the software developper and we add two theads
* - one for the kernel thread (this code)
* - one for the idle task
*/

pok_thread_t pok_threads[POK_CONFIG_NB_THREADS];

6 Submit a patch
If you found a bug or just want to send us an improvement, you can reach us at the
following address: pok-devel at listes dot enst dot fr. Please send an email
with the patch. We will answer and potentially merge your patch in the current version
of POK.

5

7 Algorithms guidelines
Before introducing new functions or modifying existing ones, please qualify your code
in terms of complexity, memory overhead, computation overhead, determinism. POK
targets safety-critical systems, and so, its functions must provide high confidence to the
user and must address these problems in its functions.

Moreover, we always follow the moto Keep It Simple, Stupid for each function:
code must be understandable and documentation to be spread over users or develop-
pers.

8 GDB’ing POK with QEMU
POK allows you to attach a remote GDB to monitor the kernel or its partitions.

To do so, go to your example directory and run the system in debug mode.

$ cd $POK_PATH/examples/partition-threads
$ make run-gdb

QEMU should be paused. Now run GDB using the kernel image.

$ gdb generated-code/kernel/kernel.elf
...
(gdb) target remote :1234
Remote debugging using :1234
0x0000fff0 in ?? ()
(gdb) continue

You’re all set if you want to debug the kernel, but what if you want to instrumentate
a partition?

In GDB, we first have to let the kernel know about the symbols of the partition.
But we also need to know where they are loaded in kernel space. Let’s say we want to
debug partition #1. One way to know where it was relocated would be:

(gdb) p pok_partitions[0].base_addr
$1 = 1175552

Please note that pok partition init must have completed or the array won’t be
initialized yet.

Now we can load the symbol table with the correct offset.

(gdb) add-symbol-file generated-code/cpu/part1/part1.elf 1175552
add symbol table from file "generated-code/cpu/part1/part1.elf" at

.text_addr = 0x11f000
(y or n) y
Reading symbols from /home/laurent/pok/examples/partitions-threads/generated-code/cpu/part1/part1.elf...done.
(gdb) b user_hello_part1
Breakpoint 1 at 0x11f17a: file ../../../hello1.c, line 21.

6

(gdb) continue
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
0x0000017a in ?? ()

You will notice debug symbols are missing, although we loaded them above. This
is because the memory mapping is not the same in kernel end userland. We have to
load the symbol file again in place of the kernel.

(gdb) symbol-file generated-code/cpu/part1/part1.elf
Load new symbol table from "/home/laurent/pok/examples/partitions-threads/generated-code/cpu/part1/part1.elf"? (y or n) y
Reading symbols from /home/laurent/pok/examples/partitions-threads/generated-code/cpu/part1/part1.elf...done.
(gdb) bt
#0 user_hello_part1 () at ../../../hello1.c:21
#1 0xc4830845 in ?? ()

9 Commit on the SVN
You MUST commit by ussing make commit at the root of the sources. This make
target will build all examples on all architectures/platforms supported by POK to verify
that modified sources seem to be consistent and do not introduce a regression.

For that, you have to install compilers for every platform supported by POK.

10 Join the POK developper network !
If you want to join the POK team, please send us an email (pok-devel at listes
dot enst dot fr. We are always looking for developpers with strong skills in C,
ASM and low-level programming.

If you are interested and think you can improve the project, you’re welcome!

7

