Book I			
Book I	1.18 A semicircle is bounded by diameter	Postulates	Constructions
Definitions	and the remaining boundary.	1.A line may be drawn through any two	1.1 equilat \triangle on AB
1.1 A point is position without magnitude.	1.19 A circular segment is bounded by a	points.	1.2 copy AB to C
1.2 A line is length without breadth.	line and the circular boundary it cuts off.	2. A line may be indefinitely extended.	1.3 copy $AB < CD$ to C
1.3 The extremities and intersections of	1.20 A triangle (\triangle) is bounded by three	3. Any point and any line from it may be	1.9 bisect ∡
lines are points.	straight lines. Any angular point can be its	used to create a circle	1.10 bisect AB
1.4 A straight line lies evenly between its	vertex and the opposite side is the base .		1.11 produce AB \perp CD
extremities.	1.21 A quadrilateral (4-gon) is bounded	Axioms	1.12 from A create \perp to BC
1.5 A surface is length and breadth.	by four lines. A line between opposite	1. Things equal to same thing are equal to	1.22 construct \triangle from 3 lines
1.6 The boundaries of surfaces are lines.	vertices is the diagonal.	each other.	1.23 @C on AB copy $\angle D$
1.7 A plane is a surface where a line	1.22 A polygon is a figure bounded by	2. Equals added to equals make equals.	1.31 @A create BC ∥ DE
joining two of its points lies entirely on the	more than 4 lines.	3. Equals taken from equals make equals.	1.42 Given \triangle and other \measuredangle create $\ $ gm = \triangle
surface.	1.23 An equilateral \triangle has three equal	4. Equals added to unequals make	1.44 Given △, AB, ∡ create ∥gm on AB
1.8 A plane angle (\measuredangle) is the inclination of	sides.	unequals.	$w/z = \Delta$
two lines to one another meeting on a	1.24 An isosceles \triangle has two equal sides.	5. Equals taken from unequals make	1.45 Given \measuredangle and rectilinear figure, create
plane.	1.25 A scalene \triangle has three unequal sides.	unequals.	∥gm w/∡ = figure
1.9 A plane rectilinear ∡ is the plane ∡ of	1.26 A right \triangle ($\land \triangle$) has one \land . Its	6. Things double the same thing are equals.	1.46 Given AB create AB ²
two straight lines. Their intersection is the	opposite side is the hypotenuse .	7, Things half the same thing are equals.	
angle's vertex.	1.27 An obtuse \triangle has one obtuse angle.	8. The whole is greater than its parts.	Triangles
(Note: straight lines will be denoted	1.28 An acute \triangle has three acute angles.	9. Magnitudes which can be made to	1.5.C1 equilateral is equiangular
"lines" and curved lines as "curves" from	1.29 Parallel () lines are two coplanar	coincide are equal.	1.6.C1 converse of 1.5.C1
this point.)	lines which, extended, never intersect.	10. Two lines cannot include a space. They	1.7 2 \triangle s same base, if 2 sides one end of
1.10 When a line meets another so as to	1.30 A gm is a 4-gon of opposing parallel	share 0, 1, or all points in common.	base equal, other 2 sides equal
make two equal \measuredangle , it is perpendicular (\bot)	sides.	11. All $rightarrow$ are equals.	1.16 ext \measuredangle of side > either opp int \measuredangle
to the other creating two right angles (\triangleright)	1.31 A square is an equilateral 4-gon with	12. If a line meet two lines, such that upon	1.17 any 2 < 2⊾
1.11 An obtuse \checkmark is greater than a \rhd .	a ⊾.	the same side it creates two equal \measuredangle ,	1.18 greater sides have greater opp \measuredangle s
1.12 An acute \checkmark is less than a $rac{}$.	1.32 A rectangle is a $\ $ gm with a \triangleright .	together less than two $rightarrow$, the two lines,	1.19 converse of 1.18
1.13 A plane figure is any shape enclosed	1.33 A rhombus is an equilateral 4-gon	extended on that side must meet.	1.20 any 2 sides greater than 3d
by lines or curves and these are its	with no \blacktriangleright .		1.21 \triangle built inside \triangle on same base has
boundary.	1.34 A rhomboid is a 4-gon with equal	Triangles – Equal	smaller sides, greater ∡
1.14 If the boundary is composed of lines,	opposing sides and no $rac{}_{}$	1.4 2 equal sides w/equal int \measuredangle	1.24 2 \triangle w/equal adj sides, greater int \measuredangle
it is a rectilinear figure (n-gon of n sides)	1.35 A trapezium is a 4-gon with two	1.8 3 equal sides	has greater base
and the lines are its sides.	sides.	1.26 2 equal ∡s w/one equal side	1.25 converse of 1.24
1.15 A circle (\circ) is a plane figure bounded			1.32 ext \measuredangle = sum of int opp \measuredangle s and all int s
by all points equal from its center.		Triangles – Isosceles	= 2b
1.16 A line from a \circ 's center to its		1.5 if isos then int. and ext. base \angle s equal	1.47 On $\square \triangle$, square on hypotenuse equals
boundary is its radius .		1.6 \triangle w/2 equal \measuredangle s, \measuredangle s opp. sides equal	squares on other two sides
1.17 A radius extended to the opposite			1.48 Converse of 1.47
boundary is the o's diameter .			

Books I - III			
Lines	Book II	Constructions	Circles
1.13 $△$ s one side of line cut by line = 2 $△$	Definitions	2.11 Divide AB in 2 parts @H:	3.2 Lines joining 2 points on \circ lie within
1.14 2 lines meet a third @A and making	1. Every rectangle is contained by two	AB•HB=AH ²	circle
adj ∡s = 2⊾ are same line	sides enclosing a $rac{1}{2}$		3.3 If line through \circ center bisects chord, it
1.15 Intersecting lines, opp. ∡s equal	2. In gm, a gm about its diagonal plus	Book III	cuts at $rac{}$, and vice versa
1.15.C1 The 4 opp ∡s = 4⊾	the two complements is a gnomon .	Definitions	3.4 2 chords, not both through center
1.15.C2 All lines at same point create 4⊾.	3. When a line is divided into parts, each	1. 2 • equal if diameters or radii equal.	cannot bisect each other
1.27 If line cuts 2 lines and alt. ∡s equal,	part is a segment . If within original line,	2. A line touches a \circ if it meets a \circ and if	3.5 If 2 \circ cut each other, not same center
the 2 lines are	internal. Else, external.	produced does not cut it. This is a tangent	3.6 If 2 \circ touch internally, not same center
1.28 2 lines if cutting line makes int. ∡s		with its point of contact.	3.7 • ABCDG, center E, diam AD, F on
on same side equal $2 \bowtie$ -or- ext. $\measuredangle s = opp \measuredangle s$	Algebra	3. $2 \circ$ touch if they meet but do not cut. If	ED, of Fx, 1)FA greatest, 2)FD least, 3)
on same side	2.1 AB•CD = AB•(segments of CD)	\circ A in \circ B, A touches internally , else	nearer FA > more remote, 4) G on circle,
1.29 Line cutting 2 ∥ lines creates ∡	2.2 AB•(segments AB) = AB^2	externally.	only one line equal FG possible
relations of 1.27, 1.28	2.3 AB cut @ C, AB•BC = $BC^2 + AC \cdot CB$	4. A line cutting a \circ at 2 points is a secant .	3.8 \circ ACB, diam BA produced to D
1.30 Lines to same line are to each	2.4 AB cut @ C, $AB^2 = AC^2 + CB^2 + 2$	5. A chord is a line connecting two points	outside, C at π , 1) lines Dx on concave arc
other	AC•CB	of a ○.	AC, DC <dx<da 2)="" arc<="" convex="" lines="" on="" td=""></dx<da>
1.33 Lines joining equal and lines are	2.4.C1 gms on diagonal of square are	6. Chords' distances are measured by	C'B, DC'>Dx>DB 3) For Dn to \circ , only one
themselves equal and	squares	their \perp s to the center.	equal Dm possible
1.34 $\ $ gm: equal opp \measuredangle s and equal sides,	2.4.C2 Squares on $2AB = 4(AB^2)$	7. A segment of a \circ is a chord and what it	3.9 \circ (D,DA): if more than two equal lines
and self-bisected by diagonal	2.5 AB, bisect C, D on CB, $AD \cdot DB + CD^2$	cuts off. The chord is the segment's base.	from E in \circ to \circ , E=D
	$= CB^2 = AC^2$	8. The \checkmark of a segment is the \checkmark from any	$3.10 \circ \text{cannot} \circ \text{cut}$ at more than 2 points
Equal Areas	2.6 AB, bisect C, produce BD, AD•DB +	point of the \circ whose arms extend to a	3.11 If 2 \circ touch internally, line through
1.35 gms on same base between same s	$CB^2 = CD^2$	segments endpoints and insists or stands	centers includes point of contact.
are equal	2.7 AB cut C, $AB^2 + CB^2 = 2(AB \cdot CB) +$	upon the part of the \circ between the arms.	3.12 If 2 \circ touch externally, line through
1.36 gms on equal bases between same s	AC ²	9. Any part of a \circ 's boundary is an arc .	centers includes point of contact.
are equal	2.8 AB cut C, $(AB+CB)^2 = 4(AB \cdot CB) +$	10. A sector is a figure bounded by two	3.13 Internally or externally $2 \circ$ touch at
1.37 \triangle s on same base between same $\ $ s	AC ²	radii and the interceptted arc. The \measuredangle of the	exactly one point.
are equal	2.9 AB bisect C, D on CB, $AD^2 + DB^2 =$	radii is the sector's ∡.	3.14 Equal chords are equidistant from
1.38 \triangle s on equal bases between same $\ $ s	$2(AC^2 + CD^2)$	11. 2 \circ with the same center are	center and conversely.
are equal	2.10 AB bisect C, produce BD, $AD^2 + DB^2$	concentric.	3.15 Diameter is greatest chord. Chords
1.39 Equal \triangle s same side of same base are	$= 2(AC^2 + CD^2)$		nearer center are greater than those more
between same s	2.12 \triangle ABC, \measuredangle C obtuse, BC produced	Constructions	remote.
1.40 Equal \triangle s on equal bases on same	meets AD \perp BD, AB ² = AC ² + BC ² +	3.1 Given \circ , find center	3.16 Line \perp to end of diameter lies outside
side of same line are between same s	2(BC•CD)	3.17 From point, on or outside \circ , draw	ο.
1.41 if $\ $ gm and \triangle on same base between	2.13 $\triangle ABC$, $\measuredangle B$ acute, $AD \perp BC$, $AC^2 =$	tangent.	3.16.C1 Line \perp to end of diameter touches
same s, gm double	$AB^2 + BC^2 - 2(BC \cdot BD)$	3.25 Given arc, create its \circ .	ο.
1.43 Complements about diagonal of gm	2.13.n1 ABC, median AD, $AB^2 + AC^2 =$	3.30 Bisect a given arc.	3.16.C2 Tangent touches \circ at exactly one
are equal	$2((1/2BC)^2 + AD^2)$	3.33 Given line, \measuredangle , create \circ segment	point
		containing ∡ equal given ∡.	3.16.C3 For any point on \circ there exists
		3.34 Given ○, ∡, cut segment containing ∡.	exactly one tangent.

	Books	III	-	V	
--	-------	-----	---	---	--

Circles (contd)	Book IV	4.6 Given \circ inscribe square.	A:B::B:C. B:C::C:D. C:D::D:E. and so on.
3.18 Radius to tangent is \perp to tangent	Definitions	4.7 Given \circ describe square.	Given 3 such magnitudes. A has a
3.19 Line \perp to point of tangency includes	1. One rectilineal figure is inscribed in	4.8 Given square, inscribe \circ .	duplicate ratio to C. given 4. A has a
center.	another if all its \measuredangle s touch the other's sides.	4.9 Given square, describe \circ .	triplicate ratio to D.
$3.20 \times$ from center is $2 \times$ from circle on	2. The outer figure is then said to be	4.10 Create isosceles \land with vertex $\checkmark = 2$	11. Given n magnitudes $(m(i))$, $m(1)$ is in
same arc.	circumscribed about the inner.	base x.	compound proportion to m(n)
3.21 s in same arc on same chord are	3. A rectilineal figure is inscribed in a \circ if	4.11 Given ♀, inscribe regular 5-gon.	compounded of $m(1):m(2):m(3), \dots$
equal	all its \measuredangle s touch the \circ .	4.12 Given ○, describe regular 5-gon.	m(n-1):m(n).
3.22 4-gon in \circ , opp \measuredangle s = 2 \bowtie and	4. A rectilineal figure is circumscribed	4.13 Given regular 5-gon, inscribe ○.	12. Proportion's antecedents are
conversely.	about a \circ if all its sides are tangents.	4.14 Given regular 5-gon, describe \circ .	homologous to each other and consequents
3.23 Same side of same chord, similar arcs	5. A \circ is inscribed within a rectiineal figure	4.15 Given ○, inscribe regular 6-gon.	are homologous to each other.
coincide.	if it touches all the figure's sides.	4.16 Given ∘, inscribe regular 15-gon.	13. Permuted or alternated : A:C::B:D
3.24 Converse of 3.23	[Note: \circ is escribed to a \wedge if it touches		14. Inverted: B:A::D:C
3.26 In equal <i>os</i> , arcs on equal ∡s, from	one side and the other two, produced.]	Book V	15. Compounded: A+B:B::C+D:D
center or circle, are equal.	6. A \circ is described about a rectlineal	Definitions	16. Divided: A-B:B::C-D:D
3.27 Converse of 3.26	figure if all the figure' \measuredangle s s are on the \circ .	1. A lesser magnitude is an aliquot part ,	17. Converted: A:A-B::C:C-D
3.28 In equal \circ s, arcs on same side of	7. A line is placed in a \circ when it forms a	measure , or submultiple of a greater if the	18. By equality means, given set a of n
equal chords are equal	chord.	greater contains the lesser an exact number	magnitudes and sets b,c, of n magnitudes,
3.29 Converse of 3.28	8.A rectilineal figure $w/ > 4$ sides is a	of times.	then a(1):a(n)::a(1):b(n)::a(1):c(n) Of
3.31 $∠$ on semicircle is $▷$; on greater arc,	polygon (5:penta-, 6:hexa-, 7:hepta-,	2.The greater is then a multiple of the	this there are two kinds.
obtuse; on lesser, acute	8:octa-, 10:deca-, 12:dodeca-,	lesser.	19. Direct equality means, given A,B,C,
3.31.C1 If one \measuredangle of a \triangle equals the other	15:quindeca-)	3. Ratio is the relation of two magnitudes	and P,Q,R, if A:B::P:Q and B:C::Q:R,
two ∡s, it is a ⊾.	9. A regular polygon has equal ∡s and	in terms of quantity. First term of A:B is	then A:C::P:R.
3.32 Given chord from tangent's point of	sides.	antecedent, second is consequent.	20. Disordered, perturbed equality or
contact, ∡s chord to tangent equal ∡s of		4. Magnitudes may only have a ratio if	cross-order means if A:B::Q:R and
alternate segments	Constructions	they are of the same kind.	B:C::P:Q then A:C::P:R
3.35 In \circ , if two chords intersect, rectangle	4.1 Given \circ , line < diameter, draw chord	5. In the ratio A:B::C:D, for any m,n in N ,	
of one chord's segments equals the	equal to line.	n <m: and="" n="m:" na="mB</td" na<mb="" nc<md,=""><td>Axioms (Simson)</td></m:>	Axioms (Simson)
rectangle of the others'.	4.2 Given \circ , \triangle , inscribe \triangle of equal \measuredangle s to	and nC=mD, n>m: nA>mB and nC>mD,	1. Equimultiples of same or equal
3.36 If from point outside \circ , one line is	given \triangle .	6. Magnitudes of the same ratio are	magnitudes are equal.
drawn to touch \circ and one to cut it, the	4.3 Given \circ , \triangle , circumscribe \triangle of equal	proportionals . With 4 magnitudes as	2. Magnitudes, of which same of equal
square of the first equals the rectangle of	∡s to given ∆.	above, then A is to B as C is to D. A,D are	equimultiples are equimultiples, are equal
the second and its outside segment.	4.4 Given \triangle , create inscribed \circ .	the extremes , B,C the means .	to each other.
3.36.C1 Given secants from point outside	4.4.N1 Given \triangle , create escribed \circ .	7. If in proportionals $nA>mB$, C $\leq mD$, A	3. A multiple of a greater magnitude is
o, the rectangles of their whole and outside	4.4.N1.C1 Line from center to apex bisects	has a greater ratio to be than C to D and C	greater than the same multiple of a lesser.
segments are equal.	base and apex's \measuredangle .	has a lesser ratio to D than A to B.	4. That magnitude, of which a multiple is
3.37 From point outside \circ , one line drawn	4.5 Given $△$, describe a \circ about it.	8. Proportion (or analogy) is the	greater than the same multiple of another,
to meet \circ , one to cut it and the square of	4.5.C1 If \triangle acute, \circ 's center in \triangle ; if right,	similitude of ratios.	is greater than that other.
the first equals the rectangle of the second	center on hypotenuse; if obtuse, center	9. Proportions have at least 3 terms.	
and its outside segment, the first is tangent.	outside opp obtuse ∡.	10. Such are in common proportion when	

	Books	V - VI	
Propositions	5.22 Given sets A,B of n magnitudes such	6.4 Two \triangle equiangular, enclosing sides of	6.20.C2 Given three lines: A:B::B:C, n-gon
then $A+B+C = m(E+F+G)$	that A(i):A(i+1)::B(i):B(i+1)	\checkmark angle on one \triangle proportional to enclosing	on A:similar n-gon on B::A:C (duplicate
5.2 If A=mB, C=mD, E=nB, F=mD,	then $A(1):A(n)::B(1):B(n)$	sides of other \triangle .	ratio)
then $A+E=(m+n)B$, $C+F=(m+n)D$	5.23 Given sets A,B of n magnitudes such	6.4.C1 Equiangular ∆s are similar	6.20.C3 Given line A:B::B:C, A:C::A ² :B ²
5.3 If A=mB, C=mD,	that $A(i):A(i+1)::B(i+1):B(i+2)$ and	6.5 If the sides about the \measuredangle s of two \triangle s	6.20.C4 Similar rectilineal figures are to
then nA=nmB, nC=nmD	A(i+1):A(i+2)::B(i):B(i+1),	taken in order are proportional, the $ riangless$ are	each other as the squares on homologous
5.4 If A:B::C:D, m,n in N ,	then $A(1):A(n)::B(1):B(n)$	equi∡.	sides.
then mA:nB::mC:nD	5.F By 5.22,23, ratios compounded of	6.6 If two \triangle s share one \measuredangle with proportional	6.21 N-gons similar to the same n-gon are
5.5 If A=mB, C=mD,	equal ratios are equal.	enclosing sides, the \triangle s are equi \measuredangle .	similar to each other.
then $A-C = m(B-D)$	5.24 If A:B::C:D and E:B::F:D.	6.7 If two \triangle s share an \measuredangle , with proportional	6.22 Given lines AB:CD::EF:GH, any
5.6 If A=mC, B=mD, E=nC, F=nD,	Then A+E:B::C+F:D	enclosing sides on 2d \measuredangle , the 3d \measuredangle s are	similar n-gons on AB, CD are proportional
then A-E=(m-n)C and B-F=(m-n)D	5.25 A:B::C:D, A max, then A+D>B+C	either equal or supplementary.	to any other similar n-gons on EF, GH
5.A If A:B::C:D,		6.8 Given $\bowtie \triangle$, and \perp from \bowtie to base, the	6.23 Equi∡ ∥gms are proportional to the
the A>= $<$ B as C>= $<$ D	Book VI	given $ riangle$ and two created are all similar to	compound ratio of their sides
5.B If A:B::C:D, then B:A::D:C	Definitions	each other.	6.24 gms on diagonal of gm are similar
5.C If A=mB, C=mD, then A:B::C:D	1. Two rectilineal figures are equiangular	6.8 C1 a. \perp is mean proportional of base	to each other and to the whole
5.D Converse of 5.C	if their angles, taken in the same order, are	segments. b. Each side of original $ riangle$ is	6.26 If two similar ∥gms have a common ∡
5.7 If A=B, then A:C::B:C and C:A::C:B	equal.	mean proportional of base and adj.	and same orientation, thay are on the same
5.8 If A>B, then A:C>B:C and C:B <c:a< td=""><td>2. Similar figures are equiangular and their</td><td>segment.</td><td>diagonal.</td></c:a<>	2. Similar figures are equiangular and their	segment.	diagonal.
5.9 If A:C::B:C then A=B and conversely	sides, taken in the same order, are	6.14 $\ $ gms of equal area sharing \measuredangle have	[6.27-29 ellided]
5.10 If A:C>B:B then A>B and	proportional. Corresponding sides are	proportional sides about equal ∡s. And	6.31 Given $\square \triangle$, any n-gon on hypotenuse
if C:B>C:A then B <a< td=""><td>homologous (precendents/antecedents in</td><td>conversely.</td><td>equals sum of similar n-gons on sides.</td></a<>	homologous (precendents/antecedents in	conversely.	equals sum of similar n-gons on sides.
5.11 If A:B::C:D and C:D::E:F	ratios)	6.15 $△$ s of equal area sharing ∡ have	6.32 If two \triangle s have two proportional sides
then A:B::E:F	3. Reciprocal figures (always \triangle) share two	proportional sides about equal ∡s. And	and are joined such that homologous sides
5.12 If A:B::C:D::E:F	angles, the enclosing sides of which are	conversely.	are $\ $, remaining sides are on one line
then A:B::A+C+E:B+D+F	proportional.	6.16 If AB:CD::EF:GH then AB•GH =	6.33 In equal \circ s, \measuredangle s, on center or on \circ ,
5.13 If A:B::C:D and C:D>E:F	4. AB cut @ C is in extreme and mean	CD•EF and conversely.	have the same ratio as the arcs subtended.
then A:B>E:F	ratio when AC <cb, ab:ac::ac:cb<="" td=""><td>6.17 If AB:CD::CD:EF then AB•EF=CD²</td><td>Same for sectors.</td></cb,>	6.17 If AB:CD::CD:EF then AB•EF=CD ²	Same for sectors.
5.14 If A:B::C:D then	5. The altitude (altd.) of a figure is a line	and conversely	6.B For any \triangle with apex \measuredangle bisected,
$A \ge < C$ as $B \ge < D$	from its vertex (highest point) to the base.	6.19 Similar \triangle s are in duplicate ratio of	rectangle of sides equals bisector ² plus
5.15 A:B::mA:mB		their homologous sides.	rectangle of bisector's segments of base
5:16 If A:B::C:D, then A:C::B:D	Theorems	6.20 Similar n-gons can be divided into	6.C For any inscribed \triangle with line from
5.17 If A:B::C:D, thenA-B:B::C-D:D	6.1 $ riangle$ and $\ $ gms of same altd are to one	equal number of similar \triangle s of same ratio	apex \perp base, rectangle of sides equals
5.18 If A:B::C:D, thenA+B:B::C+D:D	another as their bases.	to each other as n-gons to each other and	rectangle of \perp and diameter of \circ .
5.19 If A:B::C:D, then A-C:B-D::A:B	6.2 Line \parallel to side of \triangle will proportionately	n-gons are in duplicate ratio of their	6.D For any 4-gon inscribed in \circ , rectangle
5.E If A:B::C:D, then A:A-B:C:C-D	cut other sides (produced if necessary) and	homologous sides.	of diagonals equals sum of rectangles of
5.20 Any ABC, DEF, if A:B::D:E and	conversely.	6.20.C1 Similar rectilineal figures are in	opp sides.
B:C::E:F then $A \ge < C$ as $D \ge < F$	6.3 Bisector of \triangle apex cuts base into	duplicate ratio of their homologous sides.	
5.20 Any ABC, DEF, if A:B::E:F and	segments proportional to sides.		
B:C::D:E then A>= <c as="" d="">=<f< td=""><td>6.A Bisector of \triangle ext\measuredangle, base produced and</td><td></td><td></td></f<></c>	6.A Bisector of \triangle ext \measuredangle , base produced and		
	produced proportional to sides.		

	DOOKS VI, AI	(1-21), AI (1-2)	
Constructions	10. The angle of two lines which do not	27. A regular octahedron is contained by 8	14. Planes \perp to same line are \parallel to each
6.9 Given AB, cut off given submultiple.	meet is the angle of their parallels which	equal, equilateral triangles.	other.
6.10 Given divided AB, divide CD	do meet.	28. A regular dodecahedron is contained	15. If two intersecting lines are to two
similarly.	11. Similar solid figures are equiangular	by 12 equal, equilateral, equiangular	intersecting lines in another plane, the two
6.11 Given 2 lines, find 3d proportional.	and contained by equal numbers of planes.	pentagons.	planes are .
6.12 Given 3 lines, find 4th proportional.	12. A polyhedron is a solid figure bounded	29. A regular icosahedron is contained by	16. If two $\ $ planes are cut by a third, the
6.13 Given 2 lines, find mean proportional.	by planes. It is regular when bounded by	20 equal, equilateral triangles.	two intersections are
6.18 Given n-gon and line, construct	equal regular n-gons.	30. A parallelipiped is contained by 6 4-	17. Two lines cut by planes are cut in the
similar n-gon on line with same orientation	13. A pyramid has any n-gon for a base	gons and each pair of opposite sides are	same ratio.
6.25 Given two n-gons, describe a third	and triangles for sides which have edges of	parallel.	18. If a line \perp to plane, every plane
similar to the first and equal to the second.	the n-gon for a base and whose apexes	31. The projection of a line on a plane is	through that line is \perp to that plane.
6.30 Divide given line into extreme and	meet at a point.	the sum of its perpendiculars' intersections	19. If two intersecting planes are \perp to a
mean ratio.	14. A prism has two opposite, equal,	on the plane.	third, their intersection is \perp to the third.
	parallel n-gon surfaces. The remaining		20. If a solid \measuredangle is containged by 3 plane \measuredangle s,
Book XI	surfaces are parallelograms.	Propositions	any $2 > 3$ rd.
Definitions	15. A sphere is the revolution of a	1. If one part of a line is in a plane, another	21. Every solid \measuredangle is contained by plane \measuredangle s
1. A solid has length, breadth, and	semicircle about a fixed diameter.	part cannot be out of it.	together less than $4 \triangleright$.
thickness.	16. The axis of a sphere is its fixed	2. Two intersecting lines or three lines	
2. A solid is bounded by a surface .	diameter of revolution.	which meet lie in one plane.	Constructions
3. A line is perpendicular or a normal to	17, The center of a sphere is that of its	3. The intersection of two planes is a line.	11. Given plane and point not on plane,
a plane if it is at $rac{}$ to every line in the	semicircle. Its diameter is any line through	4. Let a line be at $rac{}$ to the point of	create \perp from point to plane
plane meeting it.	its center, terminated on its surface.	intersection of two other lines, then it is \perp	12. From point on plane, create line \perp to
4. Planes are perpendicular when lines \perp	18.A right circular cone is a right triangle	to their plane.	plane.
to their intersection lie in the other plane.	rotated about its side. If that side is equal to	5. If 3 lines meet at a point and a fourth is	
5. Angle of line to plane is the acute \measuredangle	the other, the cone is right-angled , if less,	\perp to all three, the 3 lie in one plane.	Book XII
between that line and a line from its point	obtuse-angled, if more, acute-angled.	6. If 2 lines are \perp to the same plane they	Propositions
of intersection with the plane to a normal	19. Axis of a cone is its line of revolution.	are II.	Lemma (X.1) Given 2 magnitudes, by
from line to plane.	20. Base of a cone is described by its other	7. If two lines are \parallel , any line joining them	repeatedly removing half or more of the
6. Angle of planes is the acute \measuredangle of two	side.	lies in their plane.	greater, it shall be smaller than the lesser.
lines, one in each plane, from a point on	21. A right circular cylinder is a rectangle	8. If two lines are \parallel and the first is \perp to a	1. Similar inscribed n-gons are in the
the intersection of the planes.	in revolution.	plane, so is the second.	proportions of the squares on the
7. Two planes have the same angle as two	22. Its axis is the side of revolution.	9. Two lines, each to a line in another	diameters.
other planes when their angles of planes	23. Its bases are the circles described by	plane, are to each other.	2. \circ s are to one another as the squares on
are equal.	opposite sides.	10. If two lines intersecting in one plane	their diameters
8. Parallel planes do not meet if produced.	24. Similar cones and cylinders have	are to two lines intersecting in another,	
A line is to a plane if they do not meet	proportional axes and base diameters.	both pairs contain equal angles.	
when produced.	25. A cube is contained by 6 equal squares.	13. From point on plane there can be only	
9. A solid angle is the \measuredangle of three or more	26. A tetrahedron is contained by 4	one \perp on same side and only one \perp from	
planes meeting at a point. If three, angle is	triangles, which is equal and equilateral	point not on plane	
trihedral. If more, polyhedral.	make it regular.		

Books VI, XI (1-21), XI (1-2)

	miniculate result	3 Ponowing Luciu	
Lines	15. If inscribed and described \circ s	Parallelograms	Quadrilaterals (4-gon)
1. Shortest line from point to other line is	concentric, \triangle equi \measuredangle	3. Diagonals of $\ $ gm bisect each other and	1. Sum of $\measuredangle s = 4 \bowtie$.
⊥.	16. If 2 \triangle s equi \measuredangle , sides proportional and	conversely.	2, If opp ∡s equal, each to each, ∥gm .
2. Given \measuredangle BAC, its bisector AD, \bot s from	conversely.	4. In ∥gm, if diagonals bisect opp ∡s,	3. If opp sides equal, each to each, gm .
AD to AC, AB equal.	17. Line base cuts off similar \triangle .	rhombus.	4. Lines joining midpoints of adj sides
3. Lines \perp to same line are \parallel .	18. Any \triangle , join apex to base, inscribe	5. In ∥gm, lines bisecting adj ∡s, intersect	creates gm
4. From any point equidistant from 2	resulting $\triangle s$, diameters proportional to $\triangle s$	at ⊾.	5. Sum squares on sides = sum squares on
lines, any 2 lines cutting the lines will	sides.	6. In $\ $ gm, if diagonals equal, then \measuredangle s equal	diagonals + 4(square on line joining
intercept equal portions of them.	19. 2 equal \triangle s, opp same base, line joining	and rectangle .	midpoints of diagonals)
5. If 2 lines cut by 3 lines, intercepts on 2	vertices bisected by base (produced).	7. In $\ $ gm, line through intersection of	6. If diagonals bisect e.o. @ ⊾, rhombus
lines proportional.	20. Median bisects all lines through sides	diagonals and $\ $ to side, bisects $\ $ gm	and conversely.
	to base.	8. In $\ $ gm, diagonals create 4 △s of equal	7. Opp. \measuredangle of rhombus are equal and
Triangles	21. \perp s from mdpts of sides meet @ point.	area.	bisected by diagonals.
1. Any 2 \triangle with two equal \measuredangle s, 3d \measuredangle s	22. Medians meet @ point (centroid)	9. In gm, sum squares on diagonals = sum	8. In rhombus , diagonals at ⊾.
equal	23. Bisectors of \triangle s meet @ point.	squares on sides.	9. Of all rectangles of same perimeter,
2. Difference of any 2 sides is less than 3d	24. Lines \perp to \measuredangle s' vertices meet @ point		square has greatest area.
side.	(orthocenter)	N-gons	10. If diagonals equal and bisect at $rac{}_{h}$,
3. Given \triangle and any point, sum of distances	25. If two medians are equal, their \measuredangle s are	1. Sum of int $∠$ s of n-gon = (2n-4) $△$. Sum	square.
from \measuredangle s to point > $\frac{1}{2}$ sum of sides	equal.	of \measuredangle s of 4-gon = 4 \bowtie .	11. Square on diagonal of square is twice
4. Any 2 sides greater than twice median	26. Difference of squares on sides = 2(base	2. Each ∡ of an equi∡ n-gon = $(2n-4)/n$ ⊾.	square.
from their enclosed \measuredangle .	x projection of apex's median on base)	3. Regular 5-gon, \measuredangle trisected by diagonals	12. 2. If 4-gon circumscribes ○, sum of opp
5. Sum of 1 \measuredangle = other 2, $\square \triangle$, < other 2,		to opp ∡.	sides equal and conversely.
acute \triangle , > other two, obtuse \triangle .	Isosceles △	4. Regular 5-gon, diagonals describe	13. Diagonals of a trapezium cut e.o. in the
6. Line 1st side, through midpoint of 2d,	1. If median from vertex \perp base, \triangle	regular 5-gon.	ratio of the sides.
bisects 3d.	isosceles and conversely.	5. Regular n-gon, ∡s bisectors meet @	14. Trapezium area = alt•(sum of sides)
7. Any \triangle bisected by its medians.	2. \perp s from sides into base \measuredangle s equal.	point.	
8. Line joining midpoints of sides = $\frac{1}{2}$ base	3. \perp from vertex to base bisects base and	6. Area of regular 6-gon is twice area equi∡	
and is to base and cuts off $\frac{1}{4}$ \triangle .	vertex ∡.	\triangle inscribed in same \circ .	
9. If 2 sides given, area maximized if	4. $\triangle ABC$, any D on base BC, BD•DC =	7. Equilateral figure inscribe in circle is	
enclosed \measuredangle is \blacktriangleright .	$AC^2 - AB^2$	equi∡.	
10. 4(sum squares on medians) = 3(sum	5. If base \measuredangle = 2 apex \measuredangle , apex \measuredangle = 1/5 2 \bowtie .	8. Regular n-gon, center of inscribed,	
squares on sides)	6. Greatest area of all \triangle s of equal	described circles is intersection of bisectors	
11. ∡s of equi∡ \triangle = 2/3 \triangleright .	perimeter.	of 2 adj ∡s.	
12. equi $\measuredangle \triangle$, square on median is 3 times		9. Regular inscribed n-gon, tangents at	
square on ½ base.		corners form reqular n-gon.	
13. $\bigtriangleup \triangle$ median from $\trianglerighteq = \frac{1}{2}$ hypotenuse.			
14. $\triangle ABC$, $AD \perp BC$, $AD^2 = BD \cdot DC$ and			
$AC^2 = BC \cdot CD$			

Immediate Results Following Euclid

Immediate Results Following Euclid			
Circles	Planes	Solids	
1. 2 \circ s meeting at 2 points, line between	1. \checkmark between 2 planes is \checkmark between their	1. Tetrahedron, sum of squares on opp	
centers bisects line between points at $rac{}$.	⊥s.	edges, less than sum of squares on other 4	
2. Chords are bisected by the diameter	2. Lines between point and plane, \perp is	edges.	
passing through them at $rac{}$.	shortest and of other lines from that point	2. Tetrahedron, sum of squares 6 edges =	
3. Midpoints of all equal chords lie on a	ones closer to foot of \perp are shorter than	4(sum squares lines joining mdpts opp	
concentric ○.	those remote.	edges)	
4. Three non-linear points determine a \circ .	3. Line to another line is to all planes	3. Tetrahedron, mdpts 2 pairs of opp edges	
5. If distance between centers of 2 \circ s equal	passing through that line.	lie on same plane and form $\ $ gm.	
sum of radii, \circ s touch externally, if equal	4. If \perp on 2 points of plane be equal, line	4. N-gons formed by cutting prism with	
to difference of radii, internally.	on extremeties to plane.	planes are equal	
6. If \circ is tangent to two lines, its center lies	5. Equal lines from point to plane form		
on their bisector.	equal ∡s to plane.		
7. Tangents on chord meet on radius	6. 2 planes not , cur by 2 planes, lines of		
produced. Let tangents meet @ T, chord	intersection contain equal \measuredangle s.		
BC, center A. then $CN \cdot CT = CA^2$			
8. Tangents , then tangencies on diameter.			
9.Let AB,CD meet at O, If $AO \cdot OB =$			
CO•OD, ABCD on circle.			
10. If 2 \circ s intersect, tangents from			
common chord produced are equal and			
common chord bisects common tangent.			
11. Incribed square is double square on			
radius.			
12. Described square is double inscribed			
square.			
13. If 2 \circ s touch each other and line, let			
A=diam 1, B=diam 2, C=seegment			
between tangencies, A:C::C:B, C mean			
proportional.			
14. 2 chords intersect inside, \measuredangle is $\frac{1}{2}$ sum of			
intercepted arcs.			
15. 2 chords intersect outside, \checkmark is $\frac{1}{2}$			
difference of intercepted arcs.			

Immediate Results Following Euclid