## Euclid - Todhunter - Synopsis

Book I

## Book I

## Definitions

1.1 A point is position without magnitude.
1.2 A line is length without breadth.
1.3 The extremities and intersections of lines are points.
1.4 A straight line lies evenly between its extremities.
1.5 A surface is length and breadth.
1.6 The boundaries of surfaces are lines.
1.7 A plane is a surface where a line joining two of its points lies entirely on the surface.
1.8 A plane angle ( $\measuredangle$ ) is the inclination of two lines to one another meeting on a plane.
1.9 A plane rectilinear $\measuredangle$ is the plane $\measuredangle$ of two straight lines. Their intersection is the angle's vertex.
(Note: straight lines will be denoted
"lines" and curved lines as "curves" from this point.)
1.10 When a line meets another so as to make two equal $\measuredangle$, it is perpendicular $(\perp)$ to the other creating two right angles ( $\square$ )
1.11 An obtuse $\measuredangle$ is greater than $a\llcorner$.
1.12 An acute $\measuredangle$ is less than $a \Delta$.
1.13 A plane figure is any shape enclosed by lines or curves and these are its

## boundary.

1.14 If the boundary is composed of lines, it is a rectilinear figure ( n -gon of n sides) and the lines are its sides.
1.18 A semicircle is bounded by diameter and the remaining boundary.
1.19 A circular segment is bounded by a line and the circular boundary it cuts off. 1.20 A triangle $(\triangle)$ is bounded by three straight lines. Any angular point can be its vertex and the opposite side is the base.
1.21 A quadrilateral (4-gon) is bounded by four lines. A line between opposite vertices is the diagonal.
1.22 A polygon is a figure bounded by more than 4 lines.
1.23 An equilateral $\triangle$ has three equal sides.
1.24 An isosceles $\triangle$ has two equal sides.
1.25 A scalene $\triangle$ has three unequal sides.
1.26 A right $\triangle(\llcorner\triangle)$ has one $\llcorner$. Its opposite side is the hypotenuse.
1.27 An obtuse $\triangle$ has one obtuse angle.
1.28 An acute $\triangle$ has three acute angles.
1.29 Parallel ( $\|$ ) lines are two coplanar lines which, extended, never intersect.
1.30 A |lgm is a 4-gon of opposing parallel sides.
1.31 A square is an equilateral 4-gon with $\mathrm{a} \square$.
1.32 A rectangle is a \|gm with a $\mathrm{\square}$.
1.33 A rhombus is an equilateral 4-gon with no $\square$.
1.34 A rhomboid is a 4 -gon with equal opposing sides and no $\square$.
1.35 A trapezium is a 4-gon with two || sides.
1.15 A circle ( $($ ) is a plane figure bounded by all points equal from its center.
1.16 A line from a o's center to its boundary is its radius.
1.17 A radius extended to the opposite boundary is the o's diameter.

## Postulates

1. A line may be drawn through any two points.
2. A line may be indefinitely extended.
3. Any point and any line from it may be used to create a circle

## Axioms

1. Things equal to same thing are equal to each other.
2. Equals added to equals make equals.
3. Equals taken from equals make equals.
4. Equals added to unequals make unequals.
5. Equals taken from unequals make unequals.
6.Things double the same thing are equals.

7, Things half the same thing are equals.
8. The whole is greater than its parts.
9. Magnitudes which can be made to coincide are equal.
10. Two lines cannot include a space. They share 0,1 , or all points in common.
11. All $\llcorner$ are equals.
12. If a line meet two lines, such that upon the same side it creates two equal $\measuredangle$, together less than two $\square$, the two lines, extended on that side must meet.

## Triangles - Equal

1.42 equal sides w/equal int $\measuredangle$
1.83 equal sides
1.262 equal $\measuredangle \mathrm{s}$ w/one equal side

## Triangles - Isosceles

1.5 if isos then int. and ext. base $\measuredangle s$ equal $1.6 \triangle \mathrm{w} / 2$ equal $\measuredangle \mathrm{s}, ~ \measuredangle \mathrm{~s}$ opp. sides equal

## Constructions

1.1 equilat $\triangle$ on AB
1.2 copy AB to C
1.3 copy $\mathrm{AB}<\mathrm{CD}$ to C
1.9 bisect $\measuredangle$
1.10 bisect AB
1.11 produce $\mathrm{AB} \perp \mathrm{CD}$
1.12 from A create $\perp$ to $B C$
1.22 construct $\triangle$ from 3 lines
1.23 @C on AB copy 4 D
1.31 @A create BC || DE
1.42 Given $\triangle$ and other $\measuredangle$ create $\| g m=\triangle$
1.44 Given $\triangle, \mathrm{AB}, \measuredangle$ create \|gm on AB
$\mathrm{w} / \mathrm{\iota}=\triangle$
1.45 Given $\measuredangle$ and rectilinear figure, create
llgm w/ $\angle=$ figure
1.46 Given AB create $\mathrm{AB}^{2}$

## Triangles

1.5.C1 equilateral is equiangular
1.6.C1 converse of 1.5.C1
$1.72 \triangle \mathrm{~s}$ same base, if 2 sides one end of base equal, other 2 sides equal
1.16 ext $\measuredangle$ of side $>$ either opp int $\measuredangle$ 1.17 any $2<2$ ■
1.18 greater sides have greater opp $\angle \mathrm{s}$
1.19 converse of 1.18
1.20 any 2 sides greater than 3d
$1.21 \triangle$ built inside $\triangle$ on same base has smaller sides, greater $\measuredangle$
$1.242 \triangle$ w/equal adj sides, greater int $\measuredangle$ has greater base
1.25 converse of 1.24
1.32 ext $\measuredangle=$ sum of int opp $\measuredangle$ s and all int s $=2$ ■
1.47 On $\Delta \triangle$, square on hypotenuse equals squares on other two sides
1.48 Converse of 1.47

## Euclid - Todhunter - Synopsis

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Lines <br> $1.13 ~ 4 \mathrm{~s}$ one side of line cut by line $=2 \square$ <br> 1.142 lines meet a third @A and making $\operatorname{adj} \measuredangle s=2 \triangleright$ are same line <br> 1.15 Intersecting lines, opp. $\Delta s$ equal <br> 1.15.C1 The $4 \mathrm{opp} \measuredangle s=4 \triangleright$ <br> 1.15.C2 All lines at same point create $4 \triangleright$. <br> 1.27 If line cuts 2 lines and alt. $\Delta s$ equal, the 2 lines are II <br> 1.282 lines \|| if cutting line makes int. $\angle \mathrm{s}$ on same side equal $2 \measuredangle$-or- ext. $\angle \mathrm{S}=\mathrm{opp} \angle \mathrm{s}$ on same side <br> 1.29 Line cutting 2 \|| lines creates $\measuredangle$ relations of 1.27, 1.28 <br> 1.30 Lines \|| to same line are || to each other <br> 1.33 Lines joining equal and \|| lines are themselves equal and \| <br> 1.34 \\|gm: equal opp $\measuredangle \mathrm{s}$ and equal sides, and self-bisected by diagonal <br> Equal Areas <br> 1.35 Ilgms on same base between same $\\|_{\mathrm{s}}$ are equal <br> 1.36 \|lgms on equal bases between same \|s are equal <br> 1.37 $\triangle$ s on same base between same $\\|_{s}$ are equal <br> $1.38 \triangle \mathrm{~s}$ on equal bases between same $\\| \mathrm{s}$ are equal <br> 1.39 Equal $\triangle \mathrm{s}$ same side of same base are between same $\\|_{s}$ <br> 1.40 Equal $\triangle s$ on equal bases on same side of same line are between same $\\|_{\text {s }}$ <br> 1.41 if $\\| \mathrm{gm}$ and $\triangle$ on same base between same \||s, \|gm double <br> 1.43 Complements about diagonal of Igm are equal | Book II <br> Definitions <br> 1. Every rectangle is contained by two sides enclosing a $\quad$ <br> 2. In \\|gm, a \|gm about its diagonal plus the two complements is a gnomon. <br> 3. When a line is divided into parts, each part is a segment. If within original line, internal. Else, external. <br> Algebra <br> 2.1 $\mathrm{AB} \cdot \mathrm{CD}=\mathrm{AB} \cdot($ segments of CD$)$ <br> $2.2 \mathrm{AB} \cdot($ segments AB$)=\mathrm{AB}^{2}$ <br> 2.3 AB cut @ $\mathrm{C}, \mathrm{AB} \cdot \mathrm{BC}=\mathrm{BC}^{2}+\mathrm{AC} \cdot \mathrm{CB}$ <br> 2.4 AB cut @ $\mathrm{C}, \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{CB}^{2}+2$ <br> AC•CB <br> 2.4.C1 Ilgms on diagonal of square are squares <br> 2.4.C2 Squares on $2 \mathrm{AB}=4\left(\mathrm{AB}^{2}\right)$ <br> 2.5 AB , bisect $\mathrm{C}, \mathrm{D}$ on $\mathrm{CB}, \mathrm{AD} \cdot \mathrm{DB}+\mathrm{CD}^{2}$ $=\mathrm{CB}^{2}=\mathrm{AC}^{2}$ <br> 2.6 AB , bisect C , produce $\mathrm{BD}, \mathrm{AD} \cdot \mathrm{DB}+$ $\mathrm{CB}^{2}=\mathrm{CD}^{2}$ <br> 2.7 AB cut $\mathrm{C}, \mathrm{AB}^{2}+\mathrm{CB}^{2}=2(\mathrm{AB} \cdot \mathrm{CB})+$ $\mathrm{AC}^{2}$ <br> 2.8 AB cut $\mathrm{C},(\mathrm{AB}+\mathrm{CB})^{2}=4(\mathrm{AB} \cdot \mathrm{CB})+$ $\mathrm{AC}^{2}$ <br> 2.9 AB bisect C , D on $\mathrm{CB}, \mathrm{AD}^{2}+\mathrm{DB}^{2}=$ $2\left(\mathrm{AC}^{2}+\mathrm{CD}^{2}\right)$ <br> 2.10 AB bisect C, produce BD, $\mathrm{AD}^{2}+\mathrm{DB}^{2}$ $=2\left(\mathrm{AC}^{2}+\mathrm{CD}^{2}\right)$ <br> $2.12 \triangle \mathrm{ABC}, ~ \triangle \mathrm{C}$ obtuse, BC produced meets $\mathrm{AD} \perp \mathrm{BD}, \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}+$ 2(BC•CD) <br> $2.13 \triangle \mathrm{ABC}, ~ \angle \mathrm{~B}$ acute, $\mathrm{AD} \perp \mathrm{BC}, \mathrm{AC}^{2}=$ $A B^{2}+B^{2}-2(B C \cdot B D)$ <br> 2.13.n1 ABC , median $\mathrm{AD}, \mathrm{AB}^{2}+\mathrm{AC}^{2}=$ $2\left((1 / 2 B C)^{2}+A D^{2}\right)$ | Constructions <br> 2.11 Divide AB in 2 parts @H: <br> $\mathrm{AB} \cdot \mathrm{HB}=\mathrm{AH}^{2}$ <br> Book III <br> Definitions <br> 1. 2 o equal if diameters or radii equal. <br> 2. A line touches a $\circ$ if it meets a $\circ$ and if produced does not cut it. This is a tangent with its point of contact. <br> 3. 2 o touch if they meet but do not cut. If $\circ \mathrm{A}$ in $\circ \mathrm{B}, \mathrm{A}$ touches internally, else externally. <br> 4. A line cutting a $\circ$ at 2 points is a secant. <br> 5. A chord is a line connecting two points of a 0 . <br> 6. Chords' distances are measured by their $\perp \mathrm{s}$ to the center. <br> 7. A segment of a $\circ$ is a chord and what it cuts off. The chord is the segment's base. <br> 8. The $\measuredangle$ of a segment is the $\measuredangle$ from any point of the $\circ$ whose arms extend to a segments endpoints and insists or stands upon the part of the o between the arms. <br> 9. Any part of a o's boundary is an arc. <br> 10. A sector is a figure bounded by two radii and the interceptted arc. The $\measuredangle$ of the radii is the sector's $\measuredangle$. <br> 11. 2 o with the same center are concentric. <br> Constructions <br> 3.1 Given $\circ$, find center <br> 3.17 From point, on or outside $\circ$, draw tangent. <br> 3.25 Given arc, create its o. <br> 3.30 Bisect a given arc. <br> 3.33 Given line, $\iota$, create $\circ$ segment containing $\measuredangle$ equal given $\measuredangle$. <br> 3.34 Given $\circ, \measuredangle$, cut segment containing $\measuredangle$. | Circles <br> 3.2 Lines joining 2 points on $\circ$ lie within circle <br> 3.3 If line through o center bisects chord, it cuts at $\llcorner$, and vice versa <br> 3.42 chords, not both through center cannot bisect each other <br> 3.5 If 2 o cut each other, not same center <br> 3.6 If $2 \circ$ touch internally, not same center <br> $3.7 \circ$ ABCDG, center E, diam AD, F on <br> ED, of Fx, 1)FA greatest, 2)FD least, 3) <br> nearer FA > more remote, 4) G on circle, only one line equal FG possible <br> $3.8 \circ \mathrm{ACB}$, diam BA produced to D outside, C at $\pi, 1$ ) lines Dx on concave arc $\mathrm{AC}, \mathrm{DC}<\mathrm{Dx}<\mathrm{DA} 2$ ) lines on convex arc $C^{\prime} B, D C^{\prime}>D x>D B 3$ ) For Dn to $\circ$, only one equal Dm possible <br> $3.9 \circ(\mathrm{D}, \mathrm{DA})$ : if more than two equal lines from E in $\circ$ to $\circ, \mathrm{E}=\mathrm{D}$ <br> $3.10 \circ$ cannot $\circ$ cut at more than 2 points <br> 3.11 If $2 \circ$ touch internally, line through centers includes point of contact. <br> 3.12 If $2 \circ$ touch externally, line through centers includes point of contact. <br> 3.13 Internally or externally $2 \circ$ touch at exactly one point. <br> 3.14 Equal chords are equidistant from center and conversely. <br> 3.15 Diameter is greatest chord. Chords nearer center are greater than those more remote. <br> 3.16 Line $\perp$ to end of diameter lies outside <br> -. <br> 3.16.C1 Line $\perp$ to end of diameter touches o. <br> 3.16.C2 Tangent touches $\circ$ at exactly one point <br> 3.16.C3 For any point on o there exists exactly one tangent. |

## Euclid - Todhunter - Synopsis

| Books III - V |  |  |  |
| :---: | :---: | :---: | :---: |
| Circles (contd) <br> 3.18 Radius to tangent is $\perp$ to tangent <br> 3.19 Line $\perp$ to point of tangency includes center. <br> $3.20 \measuredangle$ from center is $2 \measuredangle$ from circle on same arc. <br> $3.21 \angle s$ in same arc on same chord are equal <br> 3.22 4-gon in $\circ$, opp $\measuredangle \mathrm{s}=2 \triangleright$ and conversely. <br> 3.23 Same side of same chord, similar arcs coincide. <br> 3.24 Converse of 3.23 <br> 3.26 In equal os, arcs on equal $\measuredangle \mathrm{s}$, from center or circle, are equal. <br> 3.27 Converse of 3.26 <br> 3.28 In equal os, arcs on same side of equal chords are equal <br> 3.29 Converse of 3.28 <br> $3.31 \measuredangle$ on semicircle is $\llcorner$; on greater arc, obtuse; on lesser, acute <br> 3.31.C1 If one $\measuredangle$ of a $\triangle$ equals the other two $\measuredangle \mathrm{s}$, it is a a . <br> 3.32 Given chord from tangent's point of contact, $\measuredangle \mathrm{s}$ chord to tangent equal $\angle \mathrm{s}$ of alternate segments <br> 3.35 In $\circ$, if two chords intersect, rectangle of one chord's segments equals the rectangle of the others'. <br> 3.36 If from point outside $\circ$, one line is drawn to touch $\circ$ and one to cut it, the square of the first equals the rectangle of the second and its outside segment. <br> 3.36.C1 Given secants from point outside $\circ$, the rectangles of their whole and outside segments are equal. <br> 3.37 From point outside $\circ$, one line drawn to meet $\circ$, one to cut it and the square of the first equals the rectangle of the second and its outside segment, the first is tangent. | Book IV <br> Definitions <br> 1. One rectilineal figure is inscribed in another if all its $\angle s$ touch the other's sides. <br> 2. The outer figure is then said to be circumscribed about the inner. <br> 3. A rectilineal figure is inscribed in a $\circ$ if all its $\angle s$ touch the 0 . <br> 4. A rectilineal figure is circumscribed about a $\circ$ if all its sides are tangents. <br> 5. $\mathrm{A} \circ$ is inscribed within a rectiineal figure if it touches all the figure's sides. <br> [Note: ○ is escribed to a $\triangle$ if it touches one side and the other two, produced.] <br> 6. A $\circ$ is described about a rectliineal figure if all the figure' $\angle \mathrm{s} \mathrm{s}$ are on the $\circ$. <br> 7. A line is placed in a $\circ$ when it forms a chord. <br> 8.A rectilineal figure $\mathrm{w} />4$ sides is a polygon (5:penta-, 6:hexa-, 7:hepta-, 8:octa-, 10:deca-, 12:dodeca-, 15:quindeca-) <br> 9. A regular polygon has equal $\measuredangle \mathrm{s}$ and sides. <br> Constructions <br> 4.1 Given $\circ$, line < diameter, draw chord equal to line. <br> 4.2 Given $\circ, \Delta$, inscribe $\Delta$ of equal $\measuredangle s$ to given $\triangle$. <br> 4.3 Given $\circ, \Delta$, circumscribe $\Delta$ of equal $\measuredangle s$ to given $\triangle$. <br> 4.4 Given $\triangle$, create inscribed $\circ$. <br> 4.4.N1 Given $\triangle$, create escribed $\circ$. <br> 4.4.N1.C1 Line from center to apex bisects base and apex's $\measuredangle$. <br> 4.5 Given $\triangle$, describe a $\circ$ about it. <br> 4.5.C1 If $\triangle$ acute, o's center in $\triangle$; if right, center on hypotenuse; if obtuse, center outside opp obtuse $\measuredangle$. | 4.6 Given $\circ$ inscribe square. <br> 4.7 Given $\circ$ describe square. <br> 4.8 Given square, inscribe $\circ$. <br> 4.9 Given square, describe $\circ$. <br> 4.10 Create isosceles $\Delta$ with vertex $\measuredangle=2$ base 4. <br> 4.11 Given $\circ$, inscribe regular 5-gon. <br> 4.12 Given $\circ$, describe regular 5-gon. <br> 4.13 Given regular 5-gon, inscribe $\circ$. <br> 4.14 Given regular 5-gon, describe 0 . <br> 4.15 Given $\circ$, inscribe regular 6-gon. <br> 4.16 Given $\circ$, inscribe regular 15-gon. <br> Book V <br> Definitions <br> 1. A lesser magnitude is an aliquot part, measure, or submultiple of a greater if the greater contains the lesser an exact number of times. <br> 2.The greater is then a multiple of the lesser. <br> 3. Ratio is the relation of two magnitudes in terms of quantity. First term of $A: B$ is antecedent, second is consequent. <br> 4. Magnitudes may only have a ratio if they are of the same kind. <br> 5. In the ratio $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$, for any $\mathrm{m}, \mathrm{n}$ in $\mathbf{N}$, $\mathrm{n}<\mathrm{m}: \mathrm{nA}<\mathrm{mB}$ and $\mathrm{nC}<\mathrm{mD}$, $\mathrm{n}=\mathrm{m}: \mathrm{nA}=\mathrm{mB}$ and $n C=m D, n>m: n A>m B$ and $n C>m D$, 6. Magnitudes of the same ratio are proportionals. With 4 magnitudes as above, then A is to B as C is to D . $\mathrm{A}, \mathrm{D}$ are the extremes, $B, C$ the means. <br> 7. If in proportionals $n A>m B, C \leq m D, A$ has a greater ratio to be than C to D and C has a lesser ratio to $D$ than $A$ to $B$. <br> 8. Proportion (or analogy) is the similitude of ratios. <br> 9. Proportions have at least 3 terms. <br> 10. Such are in common proportion when | $\mathrm{A}: \mathrm{B}:: \mathrm{B}: \mathrm{C}, \mathrm{B}: \mathrm{C}:: \mathrm{C}: \mathrm{D}, \mathrm{C}: \mathrm{D}:: \mathrm{D}: \mathrm{E}$, and so on. Given 3 such magnitudes, A has a duplicate ratio to C , given 4 , A has a triplicate ratio to D . <br> 11. Given $n$ magnitudes ( $m(i)$ ), $m(1)$ is in compound proportion to $m(n)$ compounded of $m(1): m(2), m(2): m(3), \ldots$, $m(n-1): m(n)$. <br> 12. Proportion's antecedents are homologous to each other and consequents are homologous to each other. <br> 13. Permuted or alternated: $\mathrm{A}: \mathrm{C}:: \mathrm{B}: \mathrm{D}$ <br> 14. Inverted: $\mathrm{B}: \mathrm{A}:: \mathrm{D}: \mathrm{C}$ <br> 15. Compounded: $\mathrm{A}+\mathrm{B}: \mathrm{B}:: \mathrm{C}+\mathrm{D}: \mathrm{D}$ <br> 16. Divided: A-B:B::C-D:D <br> 17. Converted: A:A-B::C:C-D <br> 18. By equality means, given set a of $n$ magnitudes and sets b,c,... of $n$ magnitudes, then $a(1): a(n):: a(1): b(n):: a(1): c(n)$... Of this there are two kinds. <br> 19. Direct equality means, given $A, B, C, \ldots$ and $P, Q, R, \ldots$ if $A: B:: P: Q$ and $B: C:: Q: R$, then $\mathrm{A}: \mathrm{C}:: \mathrm{P}: \mathrm{R}$. <br> 20. Disordered, perturbed equality or cross-order means if $\mathrm{A}: \mathrm{B}:: \mathrm{Q}: \mathrm{R}$ and $B: C:: P: Q$ then $A: C:: P: R$ <br> Axioms (Simson) <br> 1. Equimultiples of same or equal magnitudes are equal. <br> 2. Magnitudes, of which same of equal equimultiples are equimultiples, are equal to each other. <br> 3. A multiple of a greater magnitude is greater than the same multiple of a lesser. 4. That magnitude, of which a multiple is greater than the same multiple of another, is greater than that other. |

## Euclid - Todhunter - Synopsis

Books V - VI

## Propositions

then $A+B+C=m(E+F+G)$
5.2 If $A=m B, C=m D, E=n B, F=m D$,
then $A+E=(m+n) B, C+F=(m+n) D$
5.3 If $A=\mathrm{mB}, \mathrm{C}=\mathrm{mD}$,
then $n A=n m B, n C=n m D$
5.4 If A:B::C:D, m,n in $\mathbf{N}$,
then $\mathrm{mA}: \mathrm{nB}:: \mathrm{mC}: \mathrm{nD}$
5.5 If $\mathrm{A}=\mathrm{mB}, \mathrm{C}=\mathrm{mD}$,
then $\mathrm{A}-\mathrm{C}=\mathrm{m}(\mathrm{B}-\mathrm{D})$
5.6 If $\mathrm{A}=\mathrm{mC}, \mathrm{B}=\mathrm{mD}, \mathrm{E}=\mathrm{nC}, \mathrm{F}=\mathrm{nD}$,
then $A-E=(m-n) C$ and $B-F=(m-n) D$
5.A If A:B::C:D,
the $\mathrm{A}>=<\mathrm{B}$ as $\mathrm{C}>=<\mathrm{D}$
5.B If $A: B:: C: D$, then $B: A:: D: C$
5.C If $A=m B, C=m D$, then $A: B:: C: D$
5.D Converse of 5.C
5.7 If $\mathrm{A}=\mathrm{B}$, then $\mathrm{A}: \mathrm{C}:: \mathrm{B}: \mathrm{C}$ and $\mathrm{C}: \mathrm{A}:: \mathrm{C}: \mathrm{B}$
5.8 If $\mathrm{A}>\mathrm{B}$, then $\mathrm{A}: \mathrm{C}>\mathrm{B}: \mathrm{C}$ and $\mathrm{C}: \mathrm{B}<\mathrm{C}: \mathrm{A}$
5.9 If $\mathrm{A}: \mathrm{C}:: \mathrm{B}: \mathrm{C}$ then $\mathrm{A}=\mathrm{B}$ and conversely
5.10 If $\mathrm{A}: \mathrm{C}>\mathrm{B}: \mathrm{B}$ then $\mathrm{A}>\mathrm{B}$ and
if $\mathrm{C}: \mathrm{B}>\mathrm{C}: \mathrm{A}$ then $\mathrm{B}<\mathrm{A}$
5.11 If A:B::C:D and C:D::E:F
then $A: B:: E: F$
5.12 If $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}:: \mathrm{E}: \mathrm{F}$
then $A: B:: A+C+E: B+D+F$
5.13 If $A: B:: C: D$ and $C: D>E: F$
then $A: B>E: F$
5.14 If $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$ then
$\mathrm{A}>=<\mathrm{C}$ as $\mathrm{B}>=<\mathrm{D}$
5.15 A:B::mA:mB

5:16 If $A: B:: C: D$, then $A: C:: B: D$
5.17 If $A: B:: C: D$, then $A-B: B:: C-D: D$
5.18 If $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$, then $\mathrm{A}+\mathrm{B}: \mathrm{B}:: \mathrm{C}+\mathrm{D}: \mathrm{D}$
5.19 If $A: B:: C: D$, then $A-C: B-D:: A: B$
5.E If $A: B:: C: D$, then $A: A-B: C: C-D$
5.20 Any ABC, DEF, if A:B::D:E and
$\mathrm{B}: \mathrm{C}:: \mathrm{E}: \mathrm{F}$ then $\mathrm{A}>=<\mathrm{C}$ as $\mathrm{D}>=<\mathrm{F}$
5.20 Any ABC, DEF, if A:B::E:F and
$\mathrm{B}: \mathrm{C}:: \mathrm{D}: \mathrm{E}$ then $\mathrm{A}>=<\mathrm{C}$ as $\mathrm{D}>=<\mathrm{F}$
5.22 Given sets $A, B$ of $n$ magnitudes such that $\mathrm{A}(\mathrm{i}): \mathrm{A}(\mathrm{i}+1):: \mathrm{B}(\mathrm{i}): \mathrm{B}(\mathrm{i}+1)$
then $A(1): A(n): B(1): B(n)$
5.23 Given sets $A, B$ of $n$ magnitudes such that $A(i): A(i+1):: B(i+1): B(i+2)$ and
$\mathrm{A}(\mathrm{i}+1): \mathrm{A}(\mathrm{i}+2):: \mathrm{B}(\mathrm{i}): \mathrm{B}(\mathrm{i}+1)$,
then $A(1): A(n):: B(1): B(n)$
5.F By 5.22,23, ratios compounded of equal ratios are equal.
5.24 If $\mathrm{A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}$ and $\mathrm{E}: \mathrm{B}:: \mathrm{F}: \mathrm{D}$.

Then $\mathrm{A}+\mathrm{E}: \mathrm{B}:: \mathrm{C}+\mathrm{F}: \mathrm{D}$
$5.25 \mathrm{~A}: \mathrm{B}:: \mathrm{C}: \mathrm{D}, \mathrm{A}$ max, then $\mathrm{A}+\mathrm{D}>\mathrm{B}+\mathrm{C}$

## Book VI

## Definitions

1. Two rectilineal figures are equiangular if their angles, taken in the same order, are equal.
2. Similar figures are equiangular and their sides, taken in the same order, are proportional. Corresponding sides are homologous (precendents/antecedents in ratios)
3. Reciprocal figures (always $\triangle$ ) share two proportional sides about equal $\measuredangle s$. And angles, the enclosing sides of which are proportional.
4. AB cut @ C is in extreme and mean
ratio when $A C<C B, A B: A C:$ : $A C: C B$
5. The altitude (altd.) of a figure is a line from its vertex (highest point) to the base

## Theorems

$6.1 \triangle$ and $\| g m s$ of same altd are to one another as their bases.
6.2 Line II to side of $\triangle$ will proportionately cut other sides (produced if necessary) and conversely.
6.3 Bisector of $\triangle$ apex cuts base into segments proportional to sides.
6. A Bisector of $\triangle$ ext $\measuredangle$, base produced and produced proportional to sides.
6.4 Two $\triangle$ equiangular, enclosing sides of $\measuredangle$ angle on one $\Delta$ proportional to enclosing sides of other $\triangle$.
6.4.C1 Equiangular $\triangle \mathrm{s}$ are similar 6.5 If the sides about the $\angle s$ of two $\triangle s$ taken in order are proportional, the $\Delta \mathrm{s}$ are equi $\angle$.
6.6 If two $\triangle \mathrm{s}$ share one $\measuredangle$ with proportional enclosing sides, the $\triangle \mathrm{s}$ are equi $\angle$.
6.7 If two $\Delta s$ share an $\measuredangle$, with proportional enclosing sides on $2 \mathrm{~d} ~ \iota$, the $3 \mathrm{~d} ~ \measuredangle \mathrm{~s}$ are either equal or supplementary.
6.8 Given $\triangle \triangle$, and $\perp$ from $\Delta$ to base, the given $\triangle$ and two created are all similar to each other.
$6.8 \mathrm{C} 1 \mathrm{a} . \perp$ is mean proportional of base segments. b. Each side of original $\triangle$ is mean proportional of base and adj.
segment.
6.14 \|gms of equal area sharing $\measuredangle$ have proportional sides about equal $\measuredangle \mathrm{s}$. And conversely.
$6.15 \triangle \mathrm{~s}$ of equal area sharing $\measuredangle$ have conversely.
6.16 If $\mathrm{AB}: \mathrm{CD}:: \mathrm{EF}: \mathrm{GH}$ then $\mathrm{AB} \cdot \mathrm{GH}=$

CD•EF and conversely.
6.17 If $\mathrm{AB}: \mathrm{CD}:: \mathrm{CD}: \mathrm{EF}$ then $\mathrm{AB} \cdot \mathrm{EF}=\mathrm{CD}^{2}$ and conversely
6.19 Similar $\triangle \mathrm{s}$ are in duplicate ratio of their homologous sides.
6.20 Similar n-gons can be divided into equal number of similar $\Delta s$ of same ratio to each other as n-gons to each other and n -gons are in duplicate ratio of their homologous sides.
6.20.C1 Similar rectilineal figures are in duplicate ratio of their homologous sides.
6.20.C2 Given three lines: A:B::B:C, n-gon on A:similar n-gon on B::A:C (duplicate ratio)
6.20.C3 Given line A:B::B:C, A:C:: $\mathrm{A}^{2}: \mathrm{B}^{2}$ 6.20.C4 Similar rectilineal figures are to each other as the squares on homologous sides.
6.21 N -gons similar to the same n-gon are similar to each other.
6.22 Given lines $\mathrm{AB}: \mathrm{CD}:$ : $\mathrm{EF}: \mathrm{GH}$, any similar n-gons on $\mathrm{AB}, \mathrm{CD}$ are proportional to any other similar n-gons on EF, GH 6.23 Equi 4 Igms are proportional to the compound ratio of their sides
6.24 \|gms on diagonal of $\| \mathrm{gm}$ are similar to each other and to the whole
6.26 If two similar \|gms have a common $\measuredangle$ and same orientation, thay are on the same diagonal.
[6.27-29 ellided]
6.31 Given $\Delta \triangle$, any $n$-gon on hypotenuse equals sum of similar n-gons on sides. 6.32 If two $\triangle \mathrm{s}$ have two proportional sides and are joined such that homologous sides are $\|$, remaining sides are on one line 6.33 In equal $\circ s, \measuredangle s$, on center or on $\circ$, have the same ratio as the arcs subtended. Same for sectors.
6.B For any $\Delta$ with apex $\_$bisected, rectangle of sides equals bisector ${ }^{2}$ plus rectangle of bisector's segments of base 6.C For any inscribed $\triangle$ with line from apex $\perp$ base, rectangle of sides equals rectangle of $\perp$ and diameter of $\circ$.
6.D For any 4 -gon inscribed in $\circ$, rectangle of diagonals equals sum of rectangles of opp sides.

## Books VI, XI (1-21), XI (1-2)

## Constructions

6.9 Given AB , cut off given submultiple. 6.10 Given divided AB , divide CD similarly.
6.11 Given 2 lines, find 3d proportional.
6.12 Given 3 lines, find 4th proportional.
6.13 Given 2 lines, find mean proportional. 6.18 Given n-gon and line, construct similar n-gon on line with same orientation 6.25 Given two n-gons, describe a third similar to the first and equal to the second 6.30 Divide given line into extreme and mean ratio.

## Book XI

## Definitions

1. A solid has length, breadth, and thickness.
2. A solid is bounded by a surface.
3. A line is perpendicular or a normal to a plane if it is at $\Delta$ to every line in the plane meeting it.
4. Planes are perpendicular when lines $\perp$
to their intersection lie in the other plane.
5. Angle of line to plane is the acute $\measuredangle$ between that line and a line from its point of intersection with the plane to a normal from line to plane.
6. Angle of planes is the acute $\measuredangle$ of two lines, one in each plane, from a point on the intersection of the planes.
7. Two planes have the same angle as two other planes when their angles of planes are equal.
8. Parallel planes do not meet if produced. A line is || to a plane if they do not meet when produced.
9. A solid angle is the $\measuredangle$ of three or more planes meeting at a point. If three, angle is trihedral. If more, polyhedral.
10. The angle of two lines which do not meet is the angle of their parallels which do meet.
11. Similar solid figures are equiangular and contained by equal numbers of planes. 12. A polyhedron is a solid figure bounded by planes. It is regular when bounded by equal regular n-gons.
12. A pyramid has any n-gon for a base and triangles for sides which have edges of the n-gon for a base and whose apexes meet at a point.
13. A prism has two opposite, equal, parallel n-gon surfaces. The remaining surfaces are parallelograms.
14. A sphere is the revolution of a semicircle about a fixed diameter. 16. The axis of a sphere is its fixed diameter of revolution.
17 , The center of a sphere is that of its semicircle. Its diameter is any line through its center, terminated on its surface.
15. A right circular cone is a right triangle rotated about its side. If that side is equal to the other, the cone is right-angled, if less, obtuse-angled, if more, acute-angled.
16. Axis of a cone is its line of revolution.
17. Base of a cone is described by its other side.
18. A right circular cylinder is a rectangle in revolution.
19. Its axis is the side of revolution. 23. Its bases are the circles described by opposite sides.
20. Similar cones and cylinders have proportional axes and base diameters. 25. A cube is contained by 6 equal squares. 26. A tetrahedron is contained by 4 triangles, which is equal and equilateral make it regular.
21. A regular octahedron is contained by 8 14. Planes $\perp$ to same line are \| to each equal, equilateral triangles.
22. A regular dodecahedron is contained by 12 equal, equilateral, equiangular pentagons.
23. A regular icosahedron is contained by 20 equal, equilateral triangles.
24. A parallelipiped is contained by $64-$ gons and each pair of opposite sides are parallel.
25. The projection of a line on a plane is the sum of its perpendiculars' intersections on the plane.

## Propositions

1. If one part of a line is in a plane, another part cannot be out of it.
2. Two intersecting lines or three lines which meet lie in one plane.
3. The intersection of two planes is a line. 4. Let a line be at $\Delta$ to the point of
intersection of two other lines, then it is $\perp$ to their plane.
4. If 3 lines meet at a point and a fourth is
$\perp$ to all three, the 3 lie in one plane.
5. If 2 lines are $\perp$ to the same plane they are II.
6. If two lines are $\|$, any line joining them lies in their plane.
7. If two lines are \| and the first is $\perp$ to a plane, so is the second.
8. Two lines, each \|| to a line in another plane, are II to each other.
9. If two lines intersecting in one plane are II to two lines intersecting in another, both pairs contain equal angles.
10. From point on plane there can be only one $\perp$ on same side and only one $\perp$ from point not on plane

## other.

15. If two intersecting lines are \| to two intersecting lines in another plane, the two planes are II.
16. If two || planes are cut by a third, the two intersections are \|I
17. Two lines cut by \|l planes are cut in the same ratio.
18. If a line $\perp$ to plane, every plane through that line is $\perp$ to that plane.
19. If two intersecting planes are $\perp$ to a third, their intersection is $\perp$ to the third. 20. If a solid $\measuredangle$ is containged by 3 plane $\measuredangle s$, any $2>3$ rd.
20. Every solid $\measuredangle$ is contained by plane $\measuredangle \mathrm{S}$ together less than $4\llcorner$.

## Constructions

11. Given plane and point not on plane, create $\perp$ from point to plane
12. From point on plane, create line $\perp$ to plane.

## Book XII

Propositions
Lemma (X.1) Given 2 magnitudes, by repeatedly removing half or more of the greater, it shall be smaller than the lesser. 1. Similar inscribed n-gons are in the proportions of the squares on the diameters.
2. os are to one another as the squares on their diameters

## Euclid - Todhunter - Synopsis

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Lines <br> 1. Shortest line from point to other line is $\perp$. <br> 2. Given $\measuredangle \mathrm{BAC}$, its bisector $\mathrm{AD}, \perp \mathrm{s}$ from AD to $\mathrm{AC}, \mathrm{AB}$ equal. <br> 3. Lines $\perp$ to same line are \\|. <br> 4. From any point equidistant from 2 \|| lines, any 2 lines cutting the $\\|$ lines will intercept equal portions of them. <br> 5. If 2 lines cut by $3 \\|$ lines, intercepts on 2 lines proportional. <br> Triangles <br> 1. Any $2 \triangle$ with two equal $\measuredangle \mathrm{s}, 3 \mathrm{~d} ~ \measuredangle \mathrm{~s}$ equal.. <br> 2. Difference of any 2 sides is less than 3d side. <br> 3. Given $\triangle$ and any point, sum of distances from $\measuredangle$ S to point $>1 / 2$ sum of sides <br> 4. Any 2 sides greater than twice median from their enclosed $\measuredangle$. <br> 5. Sum of $1 \measuredangle=$ other $2, \Delta \triangle$, < other 2 , acute $\triangle,>$ other two, obtuse $\triangle$. <br> 6. Line \\| 1st side, through midpoint of 2d, bisects 3d. <br> 7. Any $\triangle$ bisected by its medians. <br> 8. Line joining midpoints of sides $=1 / 2$ base and is $\\|$ to base and cuts off $1 / 4 \triangle$. <br> 9. If 2 sides given, area maximized if enclosed $\measuredangle$ is $\llcorner$. <br> 10. 4 (sum squares on medians) $=3$ (sum squares on sides) <br> 11. $\Delta s$ of equi $\angle \Delta=2 / 3 \square$. <br> 12. equi $\angle \triangle$, square on median is 3 times square on $1 / 2$ base. <br> 13. $\triangle \triangle$ median from $\triangle=1 / 2$ hypotenuse. <br> 14. $\triangle \triangle \mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}, \mathrm{AD}^{2}=\mathrm{BD} \cdot \mathrm{DC}$ and $\mathrm{AC}^{2}=\mathrm{BC} \cdot \mathrm{CD}$ | 15. If inscribed and described os concentric, $\triangle$ equiء <br> 16. If $2 \Delta s$ equi $\measuredangle$, sides proportional and conversely. <br> 17. Line \\|l base cuts off similar $\triangle$. <br> 18. Any $\Delta$, join apex to base, inscribe resulting $\triangle \mathrm{s}$, diameters proportional to $\triangle \mathrm{s}$ sides. <br> 19. 2 equal $\triangle \mathrm{s}$, opp same base, line joining vertices bisected by base (produced). <br> 20. Median bisects all lines through sides \|| to base. <br> 21. $\perp \mathrm{s}$ from mdpts of sides meet @ point. <br> 22. Medians meet @ point (centroid) <br> 23. Bisectors of $\triangle$ s meet @ point. <br> 24. Lines $\perp$ to $\measuredangle s^{\prime}$ vertices meet @ point <br> (orthocenter) <br> 25. If two medians are equal, their $\angle \mathrm{s}$ are equal. <br> 26. Difference of squares on sides $=2$ (base x projection of apex's median on base) <br> Isosceles $\triangle$ <br> 1. If median from vertex $\perp$ base, $\triangle$ isosceles and conversely. <br> 2. $\perp \mathrm{s}$ from sides into base $\measuredangle \mathrm{s}$ equal. <br> 3. $\perp$ from vertex to base bisects base and vertex $\measuredangle$. <br> 4. $\triangle \mathrm{ABC}$, any D on base $\mathrm{BC}, \mathrm{BD} \cdot \mathrm{DC}=$ $\mathrm{AC}^{2}-\mathrm{AB}^{2}$ <br> 5. If base $\measuredangle=2$ apex $\measuredangle$,apex $\measuredangle=1 / 52\llcorner$. <br> 6. Greatest area of all $\Delta s$ of equal perimeter. | Parallelograms <br> 3. Diagonals of \\|gm bisect each other and conversely. <br> 4. In \\|gm, if diagonals bisect opp $\measuredangle \mathrm{s}$, rhombus. <br> 5. In \\|gm, lines bisecting adj $\measuredangle \mathrm{s}$, intersect at b . <br> 6. In \\|gm, if diagonals equal, then $\measuredangle \mathrm{s}$ equal and rectangle. <br> 7. In \\|gm, line through intersection of diagonals and $\\|$ to side, bisects $\\| g m$ <br> 8. In $\\| g m$, diagonals create $4 \triangle \mathrm{~s}$ of equal area. <br> 9. In $\\|$ gm, sum squares on diagonals = sum squares on sides. <br> N-gons <br> 1. Sum of int $\angle \mathrm{S}$ of n -gon $=(2 \mathrm{n}-4)\llcorner$. Sum of $\angle \mathrm{S}$ of 4 -gon $=4 \mathrm{\square}$. <br> 2. Each $\measuredangle$ of an equi $\measuredangle n$-gon $=(2 n-4) / n ~\llcorner$. <br> 3. Regular 5-gon, $\measuredangle$ trisected by diagonals to opp 4 . <br> 4. Regular 5-gon, diagonals describe regular 5-gon. <br> 5. Regular n-gon, $九 \mathrm{~s}$ bisectors meet @ point. <br> 6. Area of regular 6-gon is twice area equi $\measuredangle$ $\triangle$ inscribed in same 0 . <br> 7. Equilateral figure inscribe in circle is equís. <br> 8. Regular n-gon, center of inscribed, described circles is intersection of bisectors of 2 adj $\measuredangle$ s. <br> 9. Regular inscribed n-gon, tangents at corners form reqular n-gon. | Quadrilaterals (4-gon) <br> 1. Sum of $\angle \mathrm{s}=4 \mathrm{\square}$. <br> 2, If opp $\measuredangle s$ equal, each to each, $\\| \mathbf{g m}$. <br> 3. If opp sides equal, each to each, \\|gm. <br> 4. Lines joining midpoints of adj sides creates \\|gm <br> 5. Sum squares on sides = sum squares on diagonals +4 (square on line joining midpoints of diagonals) <br> 6. If diagonals bisect e.o. @ $\llcorner$, rhombus and conversely. <br> 7. Opp. $\measuredangle$ of rhombus are equal and bisected by diagonals. <br> 8. In rhombus, diagonals at $\llcorner$. <br> 9. Of all rectangles of same perimeter, square has greatest area. <br> 10. If diagonals equal and bisect at $\llcorner$, square. <br> 11. Square on diagonal of square is twice square. <br> 12. 2. If 4-gon circumscribes 0 , sum of opp sides equal and conversely. <br> 13. Diagonals of a trapezium cut e.o. in the ratio of the $\\|$ sides. <br> 14. Trapezium area $=$ alt $\bullet($ sum of $\\|$ sides $)$ |

## Euclid - Todhunter - Synopsis

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Circles <br> 1. 2 os meeting at 2 points, line between centers bisects line between points at $\llcorner$. <br> 2. \|| chords are bisected by the diameter passing through them at $\llcorner$. <br> 3. Midpoints of all equal chords lie on a concentric 0 . <br> 4. Three non-linear points determine a $\circ$. <br> 5. If distance between centers of 2 os equal sum of radii, os touch externally, if equal to difference of radii, internally. <br> 6. If $\circ$ is tangent to two lines, its center lies on their bisector. <br> 7. Tangents on chord meet on radius produced. Let tangents meet @ T, chord BC , center A. then $\mathrm{CN} \cdot \mathrm{CT}=\mathrm{CA}^{2}$ <br> 8. Tangents II, then tangencies on diameter. 9.Let $\mathrm{AB}, \mathrm{CD}$ meet at O , If $\mathrm{AO} \cdot \mathrm{OB}=$ $\mathrm{CO} \cdot \mathrm{OD}, \mathrm{ABCD}$ on circle. <br> 10. If 2 os intersect, tangents from common chord produced are equal and common chord bisects common tangent. <br> 11. Incribed square is double square on radius. <br> 12. Described square is double inscribed square. <br> 13. If 2 os touch each other and line, let A=diam 1, B=diam 2, $\mathrm{C}=$ seegment between tangencies, $\mathrm{A}: \mathrm{C}:: \mathrm{C}: \mathrm{B}, \mathrm{C}$ mean proportional. <br> 14. 2 chords intersect inside, $\measuredangle$ is $1 / 2$ sum of intercepted arcs. <br> 15. 2 chords intersect outside, $\measuredangle$ is $1 / 2$ difference of intercepted arcs. | Planes <br> 1. $\measuredangle$ between 2 planes is $\measuredangle$ between their $\perp \mathrm{s}$. <br> 2. Lines between point and plane, $\perp$ is shortest and of other lines from that point ones closer to foot of $\perp$ are shorter than those remote. <br> 3. Line \|| to another line is \| to all planes passing through that line. <br> 4. If $\perp$ on 2 points of plane be equal, line on extremeties \|| to plane. <br> 5. Equal lines from point to plane form equal $\angle \mathrm{s}$ to plane. <br> 6. 2 planes not $\\|$, cur by 2 \|| planes, lines of intersection contain equal $\measuredangle \mathrm{s}$. | Solids <br> 1. Tetrahedron, sum of squares on opp edges, less than sum of squares on other 4 edges. <br> 2. Tetrahedron, sum of squares 6 edges $=$ 4(sum squares lines joining mdpts opp edges) <br> 3. Tetrahedron, mdpts 2 pairs of opp edges lie on same plane and form \\|gm. <br> 4. N-gons formed by cutting prism with II planes are equal |  |

