

Remake
build system

for animation projects

Konstantin Dmitriev
ksee.zelgadis@gmail.com

Hi! My name is Konstantin Dmitriev and I'm here to
talk about Remake.

Agenda

The Problem

How Remake works

Practical example

Usage cases

Development perspectives

Remake is an utility that helps you to automate
rendering routines. Let's begin with a question why
do you need Remake when you working on
animation project.

The Problem

Video sequence file

Colorchart
file

Texture file

...

R R R

Shot 1 (2D) Shot 2 (3D) Shot N

3D background
file

characters
backgrounds
colorcharts

characters
objects
textures

objects
textures

R

Typical animation project consist of many files, each related with
other. Let's look at the illustration. Project is divided into shots
(or scenes or whatever you call it). And all they are composed in
the video sequence file.

So, here's the main file.
And to be inserted into sequence file each shot should be

rendered.
Each shot have several assets – like colorcharts, textures, models,

etc.
Those assets could be stored in the shot file itself, or reside in

separate files.
Or even more, maybe we can have 2D shot including 3D

background. which could be rendered and have his own assets
– textures, objects... Maybe some assets are shared with other
shots...

As you can see, the whole picture can be quite complex. Consider
that typical 4 min long animated short consist of approximately
50 shots.

It's obvious that even a tiny change can influence the whole project
and you always need to have the whole picture up to date.

The Problem

You want the project's rendering
always be up to date

You don't want to render each file manually (you
want to render automatically)

You don't want to do full re-rendering on each
change (you want to render effectively)

and

So here's the problem – you have a lot of files with
complex dependencies and changing one file may
require re-rendering of other files (changes are
indirect). And you always want the rendering of
your project to be up to date.

At the same time you don't want to render each file
by hand, you don't want to dig into all
dependencies each time you want to update
rendering – so you want this process to be as
automatic as possible.

And you want the effective rendering – we don't want
to render all project files every time, we want to re-
render only files affected by the change.

Collaboration

Sources Sources

Bob Ann

Rendered
footage

Rendered
footage

R ?

If you collaborating on the project with someone
online, then it most likely that you will want to
minimize the amount of transferred data. And the
most effective solution is to transfer source files
only. That means that the person you collaborating
with will have to render sources himself and he will
face the same problem.

The Problem

Video sequence file

Colorchart
file

Texture file

...

R R R

Shot 1 (2D) Shot 2 (3D) Shot N

3D background
file

characters
backgrounds
colorcharts

characters
objects
textures

objects
textures

R

More than that, in case of multiple people collaborating on the
project the problem becomes even worse, because it comes to
tracking changes. Modern synchronization tools and VCS's
provide a good way to track changed files. But knowing the
changed file doesn't rescue. Even if we know which files were
changed, to re-render/update the project we need to know how
changed files related with each other (see illustration). Where
and how each file used. What is the place of each file in the
whole structure.

It is good if it is YOU who created the shot, who defined the shot
structure. But if not – it could be quite tricky to dig into each shot
and figure out relationships each time you need to update your
project rendering

And remember, we are talking about the project in development.
As practice shows, the structure of single shot , all those
relations can change dramatically a few times during the
development process.

And so, you end up in the situation – everytime someone updates
the project, the others are scratching their heads – what I should
re-render to get the project up to date?

The Project concept

Source files
Global render

settings

PROJECT

+

And finally, when we talking about re-rendering problem it
becomes obvious that we need some rendered parameters
controlled globally. And this lead to concept of a “project”, a
single unit containing all the files and sharing common
parameters for rendering.

For example, at the first stages of animation development you can
work on the small resolution to optimize rendering speed and
have faster updates. And when it comes to final render you
should be able to switch to higher resolution with minimal efforts.
Or at the last moment client asks you to deliver resulting work in
different resolution -twice higher than original. Situation is the
same – you need to quickly switch resolution and re-render.

Of course you may write some scripts that store your resolution in
variables and do rendering of your files. But remember, our
project's structure is continuously changes. So you will end up in
continuous changing your scripts. Or you will start writing more
smart scripts that consider file dependencies. And then you end
up with the same thing that I did – you will write Remake.

But hey, since it's already here let's take a look at it.

How Remake works

1. File analysis

2. Generation of Makefile

3. Make invocation

Remake tracks dependencies in your project and
depending on the changed files executes
necessary operations to keep your rendering up to
date. Let me say it again: it doesn't render the
whole project every time. Only the files affected by
the change are re-rendered.

How does it technically works. To track changes in
the files Remake uses GNU Make utility.

First it analyses file (given to render) and all its
dependencies. Then it generates Makefile with all
necessary rules. And finally it invokes Make to
track changed files and carry all necessary
operations.

Supported software

Blender (3D animation, video editing)

Synfig Studio (2D animation)

Pencil (2D animation)

Remake have modular architecture and the list of
supported applications can be easily extended by
writing additional modules.

Currently supported software is Blender, Synfig
Studio and Pencil (for Pencil our patches are
required).

Dependencies

shot.sif

colorchart.sif

video-sequence.blend

shot.sif

shot.sif rendering
(image sequence)

Direct dependency Indirect dependency

Remake recognizes two types of dependencies.
First type is direct dependency – it means that one file

directly included to another. In this example shot.sif
directly depend on colorchart.sif. When we try to render
shot.sif remake will check if both files were changed
since the last rendering and do re-rendering if some of
them was.

There's also indirect dependencies. For example shot.sif
cannot be directly inserted into video-sequence.blend,
because sif files are not supported by Blender. So we
need to render sif file into image sequence first and then
insert rendered sequence into .blend file. Thus if we will
ask Remake to re-render video-sequence.blend again,
then Remake will detect that it depend on image
sequence, which is the rendering of shot.sif. If shot.sif
was changed, the it will be re-rendered and that will
trigger re-rendering of video-sequence.blend. If shot.sif
wasn't changed since the last rendering, but video-
sequence was then only video-sequence will be
rendered. If both files are unchanged then no rendering
take place because all renderings are already up to date.

Render path rule

01/shot.sif

render/01/shot.sif.png/

A you can see Remake needs to be able to determine source file of each
rendering. And that's achieved by introducing the simple rule for location
of rendered files.

<open project directory>
Let's say we have project with configuration file, defining global parameters

like resolution, frame rate, etc.
We have some video sequence file (project.blend) and shot file (01/shot.sif).
The rule (agreement) is to put all renderings inside of the “render”

subdirectory in the project root under the same path as the source file +
format extension.

For example if our default format is PNG, then for “01/shot.sif” the
renderpath will be “render/01/shot.sif.png” (that may be a directory if we
render to image sequence or just a file if we render to some video file
format).

So, as we can see, the rendered footage is separated from source and it's
always possible to determine source file from the rendering path.

This rule is very good as it is defines a common structure, a kind of
standard. When you working on the project of someone else you don't
have to scratch your head “Where can I find this or that?” - you just know
where the main things are located.

So this is a very good agreement.
And it's very easy to follow it – just use Remake everytime you need to

render something in your project. Remake will automatically put your
rendering in proper place according to this rule.

Simple practical example here

For example, let's suppose you want to insert shot.sif into video sequence.
Let's render it with Remake OK, done, now we have corresponding
directory in the “render” subir. Let's go to the video sequence file and
insert rendered footage there. Done. Now rendering of shot.sif is inserted
into video sequence and at the same time that means that shot01.sif is
linked to video sequence file.

Now let's change shot.sif file by adding colorchart file there. Ok, finished.
We also might change other project files. But the funny thing is that to
keep our rendering up to date we don't need to render each changed file
manually, we don't even need to know which files were changed. The
shot01.sif file is already linked to video sequence file, so let's ask remake
to render all its dependencies. OK. done and we can see our sequence
up to date.

Now let's try to call rendering dependencies again, without changing
anything. You can see that Remake analyzed files but no rendering took
place – because nothing was changed since the last rendering.

Let's change colorchart now. Re-render video-sequence deps again... You
see – sequence correctly reflects all the latest changes.

Finally, suppose we just transferred our source files to another person. To
simulate this situation I just kill render directory. Ok, we have no footage
now. But it's easy to fix that, isn't it? That's right – render dependencies
again. See – all footage restored.

Also we can do normal rendering for our sequence file and we will get
finished video file. Simple!

Advantages

Common structure for animation projects

Rendering animation from sources is
simple as one-click

Reduced time for re-rendering

Let's summarize the advantages of Remake usage.

Usage cases

Amazing Sentence
http://morevnaproject.org/2011/06/19/amazing-sentence/

The Adventures of Boris Munchausen
http://munchausenproject.wordpress.com/

Persona Tomatos - commercial
http://www.youtube.com/watch?v=5WZPR5h1XwE

Morevna Project
http://morevnaproject.org/

The Remake is already used in several projects -
open-source and commercial ones. Here are some
of them that you can find on the Web.

Development perspectives

Network rendering

Templates system

Transparent integration with software

GUI

I want to finish my talk by outlining the future development
perspectives of Remake.

First one is network rendering – we want to be able to implement
parallel rendering on several computers.

Another one is template system. For example adding an empty
blender scene what will be automatically adapted to your project
settings – resolution, etc. Or more complex template for stereo
3D with a stereo camera rig. There are many templates for
Synfig. It would be nice to collect them and be able to insert in
the project at user command.

Next important one is a transparent integration with software.
Imagine blender working with Remake directly. I.e. you adding
sif file into your video sequence, Blender determines that he
can't work with .sif format directly, but he detects remake and
see that remake can process sif format. Then Blender calls
remake, renders sif file and inserts rendered sequence. From
the user point of view that's all done transparently, just by
clicking on the sif ile.

And finally it would be good to have some GUI to call Remake
commands and control project files.

Thank You

http://github.com/morevnaproject/remake

That's all. Thank you for listening.

