
Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

Nonlinear optimization in Eigen

Thomas Capricelli

InModelia http://www.inmodelia.com

Eigen Meeting
February 20th, 2010

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

1 Purposes - InModelia needs

2 History of minpack code

3 ”Porting” Workflow

4 Conclusion - TODO

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

It all started from InModelia needs with respect to numerical
processing. Our software is written in C++ and is cross-platform.

Linear Algebra

After a careful internal study, Eigen stepped as a clear winner on
top of other solutions (yeah !).

Non Linear optimization (Levenberg Marquardt)

The same kind of exhaustive search on the net brings minpack as
the best freely available LM implementation. The original code is
Fortran but there exist ”automatic translation” in C, using f2c,
tested and validated.

Challenge : how to integrate minpack in our code ?

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

The Levenberg–Marquardt algorithm

General algorithm for minimizing a (non linear) function over a
space of parameters of the function.

Most important use : least squares curve fitting problem, this is
what InModelia needs :

S(β) =
m∑
i=1

[yi − f (xi , β)]2

Can be compared to Gauss-Newton, gradient (or ”steepest”)
descent, quasi newton, BFGS, ...

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

The Levenberg–Marquardt algorithm

Notations :

J is the jacobian matrix,

λ is the dumping parameter.

(JT J + λ diag(JT J))δ = JT [y − f (β)]

Notes :

can be done in very few lines in Eigen,

a very tricky part is how to compute the dumping parameter,

lot of difficulty in numerical details, too.

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

What does minpack provide ?

hybrj : find a zero of a system of nonlinear function, using the
analytical jacobian.

hybrd : the same using an approximation for the jacobian.

lmder : Levenberg-Marquardt using the analytical jacobian.

lmdif : the same using an approximation for the jacobian.

lmstr : the same, but the whole jacobian is not stored
(”storage efficient”).

’simplified’ variants with default parameters.

All of this in two variations : float/double.

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

Minpack, in fortran, several publications.

subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,

sdiag,wa1,wa2)

integer n,ldr

integer ipvt(n)

double precision delta,par

double precision r(ldr,n),diag(n),qtb(n),x(n),

sdiag(n),wa1(n),wa2(n)

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

Someone used f2c to create some cminpack, which is kinda raw

int lmpar_(integer *n, doublereal *r__, integer *ldr,

integer *ipvt, doublereal *diag, doublereal *qtb,

doublereal *delta, doublereal *par, doublereal *x,

doublereal *sdiag, doublereal *wa1, doublereal *wa2)

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

The code was later somehow cleaned, but only so that the API
looks less uglier, the code is still ugly, weird, fortran-translated
stuff.

void lmpar(int n, double *r__, int ldr, const int *ipvt,

const double *diag, const double *qtb, double delta,

double *par, double *x, double *sdiag, double *wa1,

double *wa2)

It handles in/out, constness, and most importantly include a port
of fortrant examples. It’s still called cminpack.

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

Starting from this latest cminpack :

1 transform all examples into tests. I test result value, number
of function evaluations and number of jacobian evaluation,

2 add tests from NIST,

3 do all adaptations, being very careful not to break those tests.

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

The modification I’ve done :

Remove working arrays, gotos.

Porting to C++ : classes, templates, references, functor.

Use eigen vectors/matrices objects and API (stable norms,
triangular solvers).

Further porting to Eigen : ei *, traits, epsilon.

Provide a generic way of computing numerical differentiation
and merge variants.

Use QR from Eigen and remove the minpack implementation.

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

Before

i__1 = n;

for (j = 1; j <= i__1; ++j) {

wa3[j] = 0.;

l = ipvt[j];

temp = wa1[l];

i__2 = j;

for (i__ = 1; i__ <= i__2; ++i__)

wa3[i__] += fjac[i__ + j * fjac_dim1] * temp;

}

temp1 = enorm(n, &wa3[1]) / fnorm;

temp2 = sqrt(par) * pnorm / fnorm;

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

After :

wa3 = fjac.template triangularView<Upper>()*

(colsPermutation * wa1);

temp1 = ei_abs2(wa3.stableNorm() / fnorm);

temp2 = ei_abs2(ei_sqrt(par) * pnorm / fnorm);

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

The good news is that it works and I’m very confident that is
provides algorithms as close as possible to the original ones, with
the following added benefits :

the code is a lot simpler and easier to read,

it works with any kind of Scalar,

it works on a broad range of platforms/compilers,

eigen optimization (cache friendliness, vectorization),

it uses correct machine precision (cminpack has it hardcoded).

(meanwhile two bugs were found, fixed, reported to, and
acknowledged by cminpack maintainer).

Thomas Capricelli Nonlinear optimization in Eigen



Purposes - InModelia needs
History of minpack code

”Porting” Workflow
Conclusion - TODO

Some remains to be done, but the most important steps are :

Switch to eigen’s QR Givens decompozition for lmstr.

Improve API (sparse, fixed-size, ReturnByValue,...).

Thomas Capricelli Nonlinear optimization in Eigen


	Purposes - InModelia needs
	History of minpack code
	"Porting" Workflow
	Conclusion - TODO

