The Numerical Template Toolbox or *Why I Stopped Worrying & Loved Boost::Proto*

Joel Falcou

LRI, Equipe PARALL - Université Paris Sud XI

19 Fev. 2010

The Numerical Template Toolbox, or Why I Stopped Worrying & Loved Boost .: Proto

1/16

In Scientific Computing ...

• there is Scientific ..

The Numerical Template Toolbox, or Why I Stopped Worrying & Loved Boost:: Proto

2/16

In Scientific Computing ...

- there is Scientific ..
 - Applications are domain driven
 - Users are often programming-agnostic
 - Huge base of legacy code in fancy languages

In Scientific Computing ...

- there is Scientific ..
 - Applications are domain driven
 - Users are often programming-agnostic
 - Huge base of legacy code in fancy languages
- and there is Computing ...

In Scientific Computing ...

- there is Scientific ..
 - Applications are domain driven
 - Users are often programming-agnostic
 - Huge base of legacy code in fancy languages
- and there is Computing ...
 - Often implies performances ...
 - ... which implies architectures support
 - .. which require expertise

In Scientific Computing ... there is Scientific .. Applications are domain driven Users are often programming-agnostic Huge base of legacy code in fancy languages and there is Computing ... Often implies performances ...

- ... which implies architectures support
- .. which require expertise

The Problem

People **using** computer to do science want to do **science** first and don't care about the needed nuts and bolts and often don't understand them at all...

Fauna and Flora in S.C.

What do we want to do?

Techniques

Use modern C++ idioms

- Expression Templates
- Policy based classes
- Meta-programming

What do we want to do?

Techniques

Use modern C++ idioms

- Expression Templates
- Policy based classes
- Meta-programming

Goals

- Hides all complex C++ construct away
- Provide a "familliar" interface to users
- Let "Power-users" be able to fine tunes

Conclusion

NT2 Global Layout

NT2 Outline

The User Level

- You know MATLAB, you know NT2
- Support for 280+ functions on values and containers
- Semantic-heavy interface

NT2 Outline

The User Level

- You know MATLAB, you know NT2
- Support for 280+ functions on values and containers
- Semantic-heavy interface

The Dev. Level

- Adding features should be easy
- Generic components built on themselves
- Simplify house-keeping

NT2 Main Interface

The Numerical Template Toolbox, or Why I Stopped Worrying & Loved Boost:: Proto

7/16

NT2 Main Interface

The table class

- Models generic, multidim. MATLAB array of values
- Notion of size and position as first class object
- Power-user can use STL or other C++ like interface

NT2 Main Interface

The table class

- Models generic, multidim. MATLAB array of values
- Notion of size and position as first class object
- Power-user can use STL or other C++ like interface

Relation to proto

- proto grammars + SFINAE simplify error messages
- All containers generates a single familly of generic AST
- All operations are done recursively with proto transforms
- Dev. can add any number of AST transformation steps

9/16

NT2 Internal Structure

10/16

NT2 Implementation

Support ILP/TLP

- Functions are tag-dispatched generic P.F.O.
- New architecture specific code is tagged and automatically recognized
- Dev. can specialize variation point in the A.S.L.

10/16

NT2 Implementation

Support ILP/TLP

- Functions are tag-dispatched generic P.F.O.
- New architecture specific code is tagged and automatically recognized
- Dev. can specialize variation point in the A.S.L.

Extending NT2

- Compatible with Boost : serialization, fusion, MPL, MPI, etc ...
- New subsystem can be added through a set of extensions points
- Dev. can specialize variation point in the A.M.L.

11/16

NT2 Toolboxes

NT2 Toolboxes

Objectives

- Increase expressivity by specifying semantic heavy entities
- Semantic is usable all around AST transforms
- High-level informations grants better optimization

12/16

NT2 Toolboxes

Objectives

- Increase expressivity by specifying semantic heavy entities
- Semantic is usable all around AST transforms
- High-level informations grants better optimization

Examples

- algebra : matrix, vector, covector
- polynoms : root computing, polynom products
- geometry : shape and rigid transform

MATLAB to NT2

MATLAB to NT2

MATLAB to NT2

```
table<settings(shallow)> R = I(_,_,1);
table<settings(shallow)> G = I(_,_,2);
table<settings(shallow)> B = I(_,_,3);
```

```
Y = min(bitshift(abs(2104*R+4130*G+
802*B+135168),-13),235);
U = min(bitshift(abs(-1214*R-2384*G+
3598*B+1052672),-13),240);
V = min(bitshift(abs(3598*R-3013*G-
585*B+1052672),-13),240);
```

MATLAB to NT2

Let's round this up !

Computing for Scientist

- Contrary to other array/algebra library, NT2 choose to look strange for C++ users and easy for MATLAB users.
- We rely heavily on Boost as it simplify and streamline, platform support and modularization.
- proto helps us writing our code as real EBNF and semantic actions, just using templates
- Long list of existing applications running with NT2 : autonomous vehicles and drone, hand held device IP, etc...

15/16

Current and Future Works

What's we're cooking at the moment

- GPU support : ITOC project (CEA/LIX/LRI)
- Sparse matrix support (EDF R&D)
- Cell support : OMTE Digiteo project

Current and Future Works

What's we're cooking at the moment

- GPU support : ITOC project (CEA/LIX/LRI)
- Sparse matrix support (EDF R&D)
- Cell support : OMTE Digiteo project

Expected to start (soon)

- Unify optimization thanks to polyhedral model
- Export parts of NT2 internals as Boost library
- MPI support : PhD starting in 2010
- AVX prototype thanks to Intel simulator

15/16

Thanks for your attention